首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The J = 1 ← 0 and J = 2 ← 1 transitions and the l-doubling transitions of J = 2 – 6 of 12CH3F in the ν2 and ν5 states were analyzed by taking into account the Coriolis interaction between the two modes. The molecular constants which are derived are: ν5 - ν2, 252 412 ± 112; B51, 25 611.60 ± 0.40; Aζ5, ?38 772 ± 116; B21, 25 432.52 ± 0.33; D, 21 838.4 ± 8.2; q51, 39.58 ± 0.30 MHz; in addition to a few other minor constants. The present result is completely consistent with the recent Raman data of Escribano, Mills, and Brodersen, J. Mol. Spectrosc.61, 249 (1976). Molecular constants in the ν3 and ν6 states have also been obtained: B3, 25 197.570 ± 0.020; B6, 25 418.917 ± 0.047; Aζ6ηJ, ?0.562 ± 0.030; |q6|, 8.70 ± 0.13 MHz. Errors are 2.5 times the standard deviations.  相似文献   

2.
The lifetime and hyperfine structure constants A and B of the 62D32state in41K have been measured by the quantum beat method. The obtained values are: τ = 895(26) ns, |A| = 0.14(2) MHz, |B| = 0.05(2) MHz and B/A > 0.  相似文献   

3.
The J = 2?1 microwave spectrum of six isotopic species of HSiF3 has been observed and assigned in excited states of five of the six fundamental vibrations. The assignment is based on relative intensities, double resonance experiments, and trial anharmonic force constant calculations. Analysis of the spectra leads to experimental values for five of the αrB constants, all three l-doubling constants qt, one Fermi resonance constant φ233, and one zeta constant ζ6, 6(z).The harmonic force field has been refined to all the available data on vibration wavenumbers, centrifugal distortion constants, and zeta constants. The cubic anharmonic force field has been refined to the data on αrB and qt constants, using two models: a valence force model with two cubic force constants for SiH and SiF stretching, and a more sophisticated model. With the help of these calculations, the following equilibrium structure has been determined: re(SiH) = 1.4468(±5) A?, re(SiF) = 1.5624(±1) A?, ∠HSiF = 110.64(±3)°,  相似文献   

4.
Laser magnetic resonance (LMR) for five rotational transitions, J = 4 ← 3, 5 ← 4, 7 ← 6, 8 ← 7, 9 ← 8, of the oxygen molecule 16O16O in its metastable state, a1Δg, v = 0, are observed using six fir laser lines. Taking the known values of the g factors, their zero-field frequencies are obtained as 340.0085(6), 424.9810(9), 594.870(1), 679.780(1), and 764.658(1) GHz, respectively. They are fit by (Eh) = B0[J(J + 1) ? 4] + D0[J(J + 1) ? 4]2 + (?1)J (12)qJ (J + 1)[J(J + 1) ? 2], where B0 = 42.50457(10) GHz, D0 = 153.14(110) kHz, and q = 0.050(90) kHz.  相似文献   

5.
A millimeter-wave spectrometer having a sensitivity of 4 × 10?10 cm?1 in the 2-mm region has been constructed for observation of extremely weak millimeter-wave spectra of gases. It has been used to measure JJ, K = 0 ← 3 transitions in PH3 and JJ, K = 0 ← 3 as well as K = ±1 ← ±4 transitions in PD3. The B0 and C0 spectral constants (in MHz) are: for PH3, B0 = 133 480.15 ± 0.12 and C0 = 117 488.85 ± 0.16; for PD3, B0 = 69 471.10 ± 0.03 and C0 = 58 974.37 ± 0.05. The effective ground-state values obtained for the bond angle and bond length are: for PH3, r0 (A?) = 1.4200 and α0(o) = 93.345; for PD3, r0 (A?) = 1.4176 and α0(o) = 93.359. The corresponding zero-point-average values were calculated to be: for PH3, rz (A?) = 1.42699 ± 0.0002 and αz(o) = 93.2287; for PD3, rz (A?) = 1.42265 ± 0.0001 and αz(o) = 93.2567 ± 0.004. For both species, the equilibrium values are re (A?) = 1.41159 ± 0.0006 and αe(o) = 93.328 ± 0.02.  相似文献   

6.
We present a new technique for selectively populating excited states which are inaccessible by dipole excitation from the ground state. The method uses a static electric field to introduce a component of a dipole-allowed state into the state of interest. We have applied the method to cesium to measure lifetimes and a Stark mixing coefficient. The results are τ(62D52)=64(2) ns, τ(72D52)=92.5(15) ns, and <62D52|;ez |72P32>/(E7P?E6D)=0.7(3)×10?3 where is in kV/cm. 141  相似文献   

7.
The bending vibration bands ν4 and ν5 of HCCI were studied. From the observed rotational structure the rotational constant B0 and the centrifugal distortion constant D0 were obtained. The results were B0 = 0.105968(7) cm?1 and D0 = 1.96(7) × 10?8 cm?1 from ν4 and B0 = 0.105948(8) cm?1 and D0 = 1.96(11) × 10?8 cm?1 from ν5. The structure of the hot bands 2ν5(Δ) ← ν5(Π) and 3ν5(φ) ← 2ν5(Δ) was also resolved and hence the values α5 = ?3.033(8) × 10?4 cm?1 and q5 = 9.3(3) × 10?5 cm?1 could be derived. The other most intense hot bands following ν5 could be explained in terms of the Fermi diads ν350 and ν3 + ν5±15±1. Of the numerous hot bands accompanying ν4, only those between different excited states of ν4 could be assigned. Then estimates for α4 and q4 were also obtained. In addition, several vibrational constants were derived.  相似文献   

8.
The Raman active fundamentals ν1(A1g), ν2(Eg), ν5(F2g), and the overtone 2ν6 of SF6 have been investigated with a higher resolution and the band origins were estimated to be: ν1 = 774.53 cm?1, ν2 = 643.35 cm?1, ν5 = 523.5 cm?1, and 2ν6 = 693.8 cm?1. Raman and infrared data have been combined for estimation of several anharmonicity constants. The ν6 fundamental frequency is calculated as 347.0 cm?1. From the analysis of the ν2 Raman band, the following rotational constants of both the ground and upper states have been calculated:
B0 = 0.09111 ± 0.00005cm?1; D0 = (0.16±0.08)10?7cm?1
;
B2 = 0.09116 ± 0.00005cm?1; D2 = (0.18±0.04)10?7cm?1
.  相似文献   

9.
The magnetic hyperfine splitting νM = |NBHF/h| of 193mAu (jπ = 112?, E = 290 keV; T12 = 3.9 s) as a dilute impurity in Ni has been measured with nuclear magnetic resonance on oriented nuclei as 226.4(2) MHz. With the known hyperfine field BHF = ?264.4(3.9) kG corrected for hyperfine anomalies the g-factor and magnetic moment of 193mAu are deduced to be |g| = 1.123(17) and |μ| = 6.18(9) μN.  相似文献   

10.
Exact inverse solutions to the integral equation φ(rs|r0, k) = ?D3f (r, ω)g(r|r0, k)g(r|r, k)d3r, where g(r|rj, k); j = 0 or s is the free space Green function, are derived in plane and cylindrical coordinates for fixed ω. These solutions allow an inelastic scattering potential f(r, ω) which is of compact support r ? D3 to be recovered from scattering data collected over the surfaces of a plane and cylinder respectively.  相似文献   

11.
The fine structures of the (ν1 + ν2) and (ν2 + ν3) combination bands of ozone in the 5.7-μm region have been recorded and analyzed. The two vibrational states are coupled through Coriolis and second-order distortion terms. The interaction has been treated by the numerical diagonalization of the secular determinant for the two coupled states. With the centrifugal distortion parameters fixed to the ground state values, the following constants have been obtained: ν1 + ν2 = 1796.266, A110 = 3.6104, B110 = 0.44145, C1110 = 0.39029, ν2 + ν3 = 1726.526, A011 = 3.5537, B011 = 0.43982, C1011 = 0.38844, Y13 = ?0.466, and X13 = ?0.010 cm?1. In addition, the following anharmonic constants have been obtained: x12 = ?7.821 and x23 = ?16.494 cm?1. The value of the dipole moment ratio, R = 〈011|μz|0〉〈110|μx|0〉, is 1.30 ± 0.10.  相似文献   

12.
The role of antisymmetric tensor fields in the gauging of groups is related to theorems on cohomology theory, and Cartan integrable systems are discussed. Examples are given. Various possibilities to gauge d = 11 supergravity by decontracting its underlying group are considered. In particular the simple supergroups Osp (1 | 64) and SU(32 | 1) yield a negative result, but a certain non-semisimple supergroup containing Osp (1 | 32) is proposed as a viable candidate. The corresponding action would no longer contain the 3-index photon Aμν?, but instead a second spin 32 field ημ and boson fields Bμa1a2 and Bμa1…a5. A first order formalism for d = 11 is presented. It is to be used for an improved form of dimensional reduction.  相似文献   

13.
The fundamental bands of the CF radical in the X2Π12 and X2Π32 electronic states were observed by using an infrared tunable diode laser as a source. Zeeman modulation could be used in detecting lines not only in the 2Π32 state, but also in 2Π12, because the CF radical deviates considerably from Hund's case (a). From the least-squares analysis of the observed spectra, the following molecular constants were obtained: Be = 1.416 704 (37) cm?1, αe = 0.018 419 (50) cm?1, re = 1.271 977 (17) A?, De = 6.68 (15) × 10?6cm?1, p0 = 0.008 580 (21) cm?1, p1 = 0.008 52 (11) cm?1, and ν0 = 1286.1281 (5) cm?1, with three standard errors in parentheses.  相似文献   

14.
The parity violating E1-amplitude for the 6S–7S transition in cesium has been calculated from first principles: 〈7S|Dz|6S〉 = (0.88 ± 0.03) × 10?11 (?QWN)(?ieaB), where QW is the weak nuclear charge, N is the number of neutrons, and aB is The Bohr radius. The experimental data from Bouchiat et al. make it possible to find QW = ?73.4 ± 8.1 ± 6 and the Weinberg angle sin2θW = 0.237 ± 0.036 ± 0.03. To control the accuracy, the energy levels, the fine and hyperfine structure intervals and the oscillator strenghts in the S-P transitions in Cs have been calculated.  相似文献   

15.
The deep inelastic structure function D(ω, q2) is calculated in the leading log approximation for (2π22S (q02) 1n ω < 0.84 1n(1αS(q2)). For larger ω up to (2π22S) 1n ω < 0.42 α2S (q02)α2S(q2) the influence of reggeon cuts proves to slow down the growth of the structure function. A reggeon diagram technique is developed, and D is calculated up to a pre-exponent O(1), leading to D(ω, q2) ∝ q2 for (2π22S(q20) 1n ω ? 0.42 α 2S(q02)αS2(q2). By assuming the reggeon diagrams when ω is still greater, one can expect to obtain a strong coupling behaviour: D(ω, q2) ∝ q2(ln ω)η (η <2).  相似文献   

16.
The discrepancies concerning the optical and microwave values of B0 and D0 for the X3Σg? state of O2 have been removed by a nonlinear least-squares fit to all of the lines of the O2, b 1Σg+-X 3Σg? Red Atmospheric bands recorded by Babcock and Herzberg (Astrophys. J., 108, 167, 1948). The resulting values for B0″ and D0″ are in excellent agreement with the Raman and microwave values. Improved values are determined for B1″, D1″, γ1″ (spin-rotation), and ?1″ (spin-spin). Both γv″ and ?v″ increase in magnitude from v″ = 0 to v″ = 1. Improved Dunham Yi0 and Yi1 expansion coefficients are determined for the b 1Σg+ state, from which the Rydberg-Klein-Rees potential is constructed.  相似文献   

17.
R. Eder  E. Hagn  E. Zech 《Nuclear Physics A》1984,413(2):247-254
The magnetic hyperfine splitting νM = |NBHF/h| of 175Ta (Jπ = 72+; T12 = 10.5 h) in Fe has been measured with the technique of nuclear magnetic resonance on oriented nuclei as 320.4(1) MHz. With the known hyperfine field BHF(TaFe) = ?648(13)kG the magnetic moment of the 72+[404] ground state of 175Ta is deduced to be ¦μ¦ = 2.27(5)μN.  相似文献   

18.
The resonant 2-photon E(O+g) ← B(O+g) ← X(O+g) transition of I2 vapor has been studied by polarization spectroscopy, leading to a rotational analysis of the ν = 0–15 vibrational levels of the E state. The principal constants determined are Be = 19.9738(42) × 10-3, αe = 5.602(84) × 10-5, γe = 1.02(41) × 10-7, DeJ = 3.040(74) × 10-9cm-1, and re = 3.6470(5) A?.  相似文献   

19.
The J = 9272, 2Π32 and 2Π12, ground vibrational state transitions of 35ClO and 37ClO and the 2Π12, excited vibrational state transitions of 35ClO have been observed in the 164–167 GHz region. Additional measurements have also been made on the J = 3212 and J = 5232 transitions of both the ground and excited vibrational states. All measurements were made using millimeter oscillators which were phase locked to harmonics of a Hewlett-Packard microwave spectrometer's X-band source. Λ-doubling splitting of a few 2Π12 transitions was resolved.When magnetic and nuclear quadrupole hyperfine terms off-diagonal in J and Ω in the Hund's case (a) representation were included in addition to the usual diagonal terms, an excellent fit to all of our observed transitions resulted. The most significant change from previously determined parameters is the centrifugal distortion constant D for which the values, D0 = 0.03972(26) MHz for 35ClO, D0 = 0.03888(32) MHz for 37ClO and D1 = 0.0395(21) MHz for 35ClO are obtained. Values of 1.56959(1) Å for the equilibrium bond length and 854(7) cm?1 for the equilibrium vibrational frequency are derived from the measured spectra. In addition, values for the Λ-doubling constant βp and the quadrupole coupling constant eQq2 were derived from the measured spectra for the first time.  相似文献   

20.
The microwave and millimeter wave spectra of isothiocyanic acid, HNCS, in the ground vibrational state have been investigated in the frequency region 8–300 GHz. The a-type R-branch transitions have been assigned up to J = 25 and Ka = 4, and the a-type qQ1 branch transitions up to J = 45. No b-type transitions could be identified in the frequency region covered. The far infrared data reported by Krakow, Lord, and Neely [J. Mol. Spectrosc., 27, 148 (1968)] were combined with our millimeter wave data in order to determine reliable spectroscopic constants. The rotational Hamiltonian, Watson's formalism with S reduction, has been extended empirically to higher order to facilitate the fitting of the large centrifugal distortion effects. The obtained constants are:
A = 1357.3 GHz; B = 5883.4627 MHz; C = 5845.6113 MHz; DJ = 1.19393 kHz; DJK = ?1025.37 kHz; DK = 51.57 GHz; d1 = ?13.781 Hz; d2 = ?4.59 Hz.
The 14N quadrupole coupling constant has also been determined: χaa = 1.114 MHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号