首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The behavior of the magnetic properties of magnetite Fe3O4 irradiated by swift heavy ions is investigated by magnetization measurements. Although there is no induced structural phase transformation, both coercive field and saturation magnetization are sensitive to ion irradiation and exhibit different behaviors depending on the ion fluence range. In the low fluence regime, the coercive field increases, which is evidence for a strong pinning of magnetic domain boundaries by the induced defects. The magnetization shows a decrease in the saturation value and tends to reorient perpendicularly to the ion track axis. At high fluence, the initial magnetic properties of the sample are nearly restored. The changes in the magnitude and the direction of magnetization are interpreted by magnetostrictive effects related to the stress induced by irradiation. A phenomenological model is applied to reproduce the fluence evolution of the saturation magnetization, assuming relaxation of the stress induced around the core of defects of the tracks by overlapping effects at high fluence. The results are compared to those obtained in the case of yttrium iron garnet Y3Fe5O12. Received 18 April 2001 and Received in final form 24 July 2001  相似文献   

2.
Using 170Yb and 155Gd M?ssbauer measurements down to 0.03 K, we have examined the semiconducting pyrochlore Yb2Mo2O7 where the Mo intra-sublattice interaction is anti-ferromagnetic and the metallic pyrochlore Gd2Mo2O7 where this interaction is ferromagnetic. Additional information was obtained from susceptibility, magnetisation and 172Yb perturbed angular correlation measurements. The microscopic measurements evidence lattice disorder which is important in Yb2Mo2O7 and modest in Gd2Mo2O7. Magnetic irreversibilities occur at 17 K in Yb2Mo2O7 and at 75 K in Gd2Mo2O7 and below these temperatures the rare earths carry magnetic moments which are induced through couplings with the Mo sublattice. In Gd2Mo2O7, we observe the steady state Gd hyperfine populations at 0.027 K are out of thermal equilibrium, indicating that Gd and Mo spin fluctuations persist at very low temperatures. Frustration is thus operative in this essentially isotropic pyrochlore where the dominant Mo intra-sublattice interaction is ferromagnetic. Received 13 January 2003 Published online 4 June 2003 RID="a" ID="a"e-mail: hodges@drecam.saclay.cea.fr  相似文献   

3.
Magnetite Fe3O4 films were grown on single crystal MgO (001) substrates using facing target sputtering technique. Conversion Electron M?ssbauer Spectroscopy and magneto optical polar Kerr spectra have confirmed the stoichiometric repartition of Fe cations corresponding to the inverse spinel structure and the electronic structure characteristic of bulk Fe3O4. Hysteresis loops carried out at room temperature show that, in a 1 T applied magnetic field, only 60% of the saturation magnetization is detected. This behavior is discussed in correlation to the antiphase boundaries (APBs) observed by electron microscopy. Magnetic force microscopy studies show that magnetic domains are larger than the mean distance between APBs. Received 2 July 2001  相似文献   

4.
We have studied the magnetization of a system of γ-Fe2O3 (0.68 vol.%) nanoparticles isolated in an SiO2 amorphous matrix placed in an alternating magnetic field with a frequency of 640 Hz and in the temperature range of (77-300) K. Compared to temperatures closer to 300 K (where the system has a superparamagnetic behaviour), at lower temperatures, the magnetization has a dynamic hysteresis loop due to the magnetization's phase shift between the field and the magnetization. The delay of the magnetization (attributed to the Néel relaxation processes) increases with the decrease of temperature. It has been shown that the relaxation time resulting from the Néel theory is determined by an effective anisotropy constant ( K ) that takes into account the magnetocrystalline anisotropy, as well as the shape, surface and strain anisotropies. In the following we will show that the surface and strain anisotropy components have the most significant influence. When the temperature decreases from 300 to 77 K, the relative increase of the saturation magnetization of the nanoparticles is much higher than that of the (spontaneous) saturation magnetization of bulk γ-Fe2O3. This increase is due to the increase of the mean magnetic diameter of the particles attached to the core of aligned spins, from 10.16 nm to 11.70 nm, as a result of the modification of the superexchange interaction in the surface layer. Received 25 April 2002 / Received in final form 11 August 2002 Published online 14 February 2003 RID="a" ID="a"e-mail: ccaizer@physics.uvt.ro  相似文献   

5.
Magnetic exchange coupling has been observed for ultrathin films of yttrium iron garnet (Y3Fe5O12 or YIG). Single-crystalline YIG films were prepared on yttrium aluminium garnet (Y3Al5O12 or YAG) substrates by pulsed laser deposition. (111) and (110) oriented substrates were used. Film thicknesses were varied from 180 ? to 4600 ?. Epitaxial growth of YIG on YAG was obtained in spite of the lattice mismatch of 3%. Magnetic hysteresis loops recorded for ultrathin YIG films have a “bee-waist” shape and show a coupling between two different magnetic phases. The first phase is magnetically soft YIG. A composition study by secondary ion mass spectroscopy shows the second phase to be Y3Fe5-xAlxO12 due to the interdiffusion of Fe and Al at the film/substrate interface. This compound is known to be magnetically harder and to have weaker magnetization than YIG. The coupling of the two phases leads to a hysteresis loop displacement at low temperatures. This displacement varies differently with film thickness for two substrate orientations. Assuming an interfacial coupling, the maximal interaction energy is estimated to be about 0.17 erg/cm2 at 5 K for (111) oriented sample. Received 3 June 2002 / Received in final form 7 October 2002 Published online 27 January 2003 RID="a" ID="a"Presently at LPM, Université H. Poincaré, BP 239, 54506 Vandœuvre-lès-Nancy e-mail: popova@lpm.u-nancy.fr  相似文献   

6.
Using 155Gd M?ssbauer spectroscopy down to 27 mK, we show that, in the geometrically frustrated pyrochlore Gd2Sn2O7, the Gd3+ hyperfine levels are populated out of equilibrium. From this, we deduce that the hyperfine field, and the correlated Gd3+ moments which produce this field, continue to fluctuate as T ↦ 0. With a model of a spin 1/2 system experiencing a magnetic field which reverses randomly in time, we obtain an analytical expression for the steady state probability distribution of the level populations. This distribution is a simple function of the ratio of the nuclear spin relaxation time to the average electronic spin-flip time. In Gd2Sn2O7, we find the two time scales are of the same order of magnitude. We discuss the mechanism giving rise to the nuclear spin relaxation and the influence of the electronic spin fluctuations on the hyperfine specific heat. The corresponding low temperature measurements in Gd2Ti2O7 are presented and discussed. Received 17 October 2001 Published online 6 June 2002  相似文献   

7.
The microstructure evolution and low field magnetic properties i.e. initial magnetic susceptibility, stabilization field and magnetic after-effect as disaccommodation of the amorphous and nanocrystalline Fe80Zr4Ti3B12Cu1 alloy were investigated. The heat treatment of the as-quenched Fe80Zr4Ti3B12Cu1 alloy at 773 K for 1 h leads to its nanocrystallization. It was stated that initial magnetic susceptibility increases and intensity of disaccommodation decreases with increasing of annealing temperature. The magnetic after-effect of the investigated nanocrystalline samples is connected with relaxation processes that occur in the amorphous matrix.  相似文献   

8.
The magnetic properties of the cyclic compound [Fe6(bicine)6] LiClO4 . 2MeOH are reported. The cluster Fe6(bicine)6 forms an antiferromagnetically coupled ring structure of Fe III ions. The magnetic susceptibility is measured between 2 and 300 K and yields the exchange coupling of J/k B = - 27.5±0.5 K. The field dependence of the magnetic moment is studied at 3 and 6 K in magnetic fields up to 5 T. The zero-field splitting of the first excited spin states with S = 2 and 3 are determined by ESR at 94 GHz. The intra-molecular interactions of the Fe III ions are analyzed and the on-site anisotropy of the Fe III due to the ligand-configuration is determined to d /k B = - 0.633±0.008K. Received 28 October 2002 / Received in final form 22 February 2003 Published online 20 June 2003 RID="a" ID="a"e-mail: bernd@piobelix.physik.uni-karlsruhe.de  相似文献   

9.
The spontaneous magnetization of the Ni0.4Fe0.6[Ni0.6Cr1.4]O4, Cu0.4Fe0.6[Ni0.6Cr1.4]O4, and Zn0.4Fe0.6[Ni0.6Cr1.4]O4 samples has been investigated. Based on the results obtained, it is concluded that the anomalous temperature dependences of spontaneous magnetization stem from the presence of a frustrated magnetic structure in at least one of the sublattices.  相似文献   

10.
We report a study of the magnetotransport properties of the Co2Cr0.6Fe0.4Al Heusler alloy grown by means of the arc-melting technique. X-ray diffraction and energy dispersive X-ray spectroscopy have been used to analyze the crystallographic structure and the sample stoichiometry. Temperature-dependent magnetization measurements have been carried out in the range 300-850 K. Co2Cr0.6Fe0.4Al is theoretically predicted to have full positive spin polarization at the Fermi level, and as a consequence its spin-dependent transport properties are being intensively studied. Low field magnetoresistance exceeding 30% has been observed very recently in Co2Cr0.6Fe0.4Al compact pellets. We have performed magnetoresistance and magnetostriction measurements in both the as-grown alloy and compact pellets made of mechanically milled Co2Cr0.6Fe0.4Al. The as-grown and the milled sample show negligible anisotropic magnetostriction (25 μst at saturation), whilst only the milled sample exhibits magnetoresistance (0.65% at 300 K). These results permit us to discard the magnetostrictive effects as the magnetoresistance source.  相似文献   

11.
Size effect on the internal magnetic structure has been investigated on weakly interacting magnetite (Fe3O4) nanoparticles by ferromagnetic resonance experiments at 9.5 GHz as a function of temperature (4–300 K). A set of three samples with mean particle size of 2.5 nm, 5.0 nm and 13.0 nm, respectively, were prepared by chemical route with narrow size distribution (σ < 0.27). To minimize the dipolar interaction, the particles were dispersed in a liquid and a solid polymer matrix at ∼0.6% in mass. By freezing the liquid suspension with an applied external field, a textured was obtained. Thus, both random and textured suspensions were studied and compared. The ferromagnetic resonance experiments in zero-field-cooled and field-cooled conditions were carried out to study the size effect on the effective anisotropy field. The dc magnetization measurements clearly show that the internal magnetic structure was strongly affected by the particle size.  相似文献   

12.
Using vibrating sample magnetometery (VSM) 50 MeV Li3+ ion irradiation effects on magnetic properties of single crystals of SrGaxInyFe12−(x+y)O19 (where x=0, 5, 7, 9; y=0, 0.8, 1.3, 1.0), are reported. The substitution of Ga and In in strontium hexaferrite crystals decreases the value of magnetization sharply, which is attributed to shifting of collinear magnetic order to a non-collinear one. Reduction of magnetization is also explained to be as a result of the occupation of the crystallographic sites of Fe3+ by Ga3+ and In3+. The Li3+ ion irradiation decreases the value of magnetization, irrespective of whether the crystals are Ga–In substituted or unsubstituted crystals of SrFe12O19. The result is interpreted in terms of the occurrence of a paramagnetic doublet in crystals replacing magnetic sextuplet as a result of irradiation. Substitution of Ga–In in Strontium hexaferrite decreases the value of anisotropy constant. Irradiation with Li3+ ions increases the values of anisotropy field for both substituted as well as unsubstituted crystals. Substitution with Ga–In also decreases the Curie temperature (Tc) but the irradiation with Li3+ ions does not affect the curie temperature of either Ga–In substituted or pure SrFe12O19 crystals.  相似文献   

13.
The A-site substituted BaTiO3 ceramics were prepared by solid-state reaction via partial substitution of Fe for Ba2+. By comparison with the B-site substituted sample made under similar conditions, the effect of Fe doping site on microstructure and magnetism was investigated using X-ray diffraction, Mössbauer spectroscopy and vibrating sample magnetometer. It is found that A-site substitution can be realized to a certain extent at 7 at% Fe addition, whereas impurities are observed at higher Fe concentrations. In the nominal (Ba0.93Fe0.07)TiO3 sample, the Fe ions are present as Fe2+ and Fe3+, respectively, replacing A-site Ba2+ and octahedral B-site Ti4+ in hexagonal perovskite lattice. The double-exchange Fe2+-O2−-Fe3+ interactions produce ferromagnetism well above room temperature, but the saturation magnetization and the Curie temperature are both obviously lower than those for B-site substitution due to different magnetic exchange mechanisms. In the B-site substituted sample Ba(Ti0.93Fe0.07)O3, the super-exchange interactions between Fe3+ on pentahedral and octahedral Ti4+ sites are responsible for ferromagnetism. These results mean that B-site substitution is a better way for Fe-doped BaTiO3 system to obtain high-Curie-temperature ferromagnetism. Moreover, increasing pre-sintering time can further improve the magnetism of B-site substituted samples, through which the saturation magnetization for Ba(Ti0.93Fe0.07)O3 is enhanced ∼6 times.  相似文献   

14.
The oxygen deficient cobaltites LnBaCo2O5 (Ln = Tb, Dy, Ho) exhibit two successive crystallographic transitions at T N 340 K and at T CO 210 K. Whereas the first transition (P4/mmm to Pmmm) is related to the long-range antiferromagnetic ordering of the Co ions (spin ordering), the second transition (Pmmm to Pmmb) corresponds to the long-range ordering of the Co2+ and Co3+ species (charge ordering) occurring in 1:1 ratio in the structure. The charge ordered (CO) state was directly evidenced by the observation of additional superstructure peaks using neutron and electron diffraction techniques. The CO state was also confirmed indirectly from refinement of high resolution neutron diffraction data as well as from resistivity and DSC measurements. From the refined saturated magnetic moment values only, 3.7 and 2.7 , the electronic configuration of the Co ions in LnBaCo2O5 remains conjectural. Two pictures, with Co3+ ions either in intermediate spin state ( t 5 2g e 1 g ) or in high spin state ( t 4 2g e 2 g ), describe equally well our experimental data. In both cases, the observed magnetic structure can be explained using the qualitative Goodenough-Kanamori rules for superexchange. Finally, in contrast to the parent Ln = Y compound [Vogt et al. , Phys. Rev. Lett. 84, 2969 (2000)], we do not report any spin transition in LnBaCo2O5 (Ln = Tb, Dy, Ho). Received 13 December 2000  相似文献   

15.
Nanocrystalline La-substituted Zn–Cu–Cr ferrites Zn0.6Cu0.4Cr0.5LaxFe1.5−xO4 (x=0.00, 0.02, 0.04, 0.06) were prepared by a rheological phase reaction method. The obtained powders were characterized by X-ray diffractometer, transmission electron microscopy and vibrating sample magnetometer. Permeability of the samples was investigated using an impedance analyzer. The results indicated that ferrite samples had the single spinel phase at low La content. Lattice parameter increased with increasing La content, while particle size calculated from Scherrer's formula decreased with increasing La content in La-substituted ferrite samples. The magnetic properties of La-substituted ferrites were strongly affected by La content. The saturation magnetization decreased, while coercivity increased with increasing La content. The variation of real permeability with La content was investigated in the frequency range of 1 MHz–1 GHz.  相似文献   

16.
We have measured the zero field and field cooled magnetization of the lightly oxygen doped Cu-rich La2CuO 4 + δ in a wide temperature range (5 K to 350 K). The data together with the evolution of the magnetic hysteresis loop suggest that the ferromagnetism with Curie temperature of 280 K coexists with superconductivity below the transition temperature ∼ 34 K. The coexistence occurs in the hole-rich clusters of size ? 150 nm, which are electronic phase separated from the hole-poor antiferromagnetic background. Received 17 October 2001  相似文献   

17.
Zinc-substituted cobalt ferrites, Co1–xZnxFe2O4, were for the first time successfully prepared by forced hydrolysis method. The obtained materials are single phase, monodispersed nanocrystalline with an average grain size of about 3 nm. These materials are superparamagnetic at room temperature and ferrimagnetic at temperature lower than the blocking temperature. When the zinc substitution increases from x=0 to 0.4, at 4.2 K, the saturation magnetization increases from 72.1 to 99.7 emu/g. The high saturation magnetization of these samples suggests that this method is suitable for preparing high-quality nanocrystalline magnetic ferrites for practical applications.  相似文献   

18.
First principles calculations based on the density functional theory within the local spin density approximation plus U(LSDA + U) scheme, show rhombohedral Bi2FeTiO6 is a potential multiferroic in which the magnetism and ferroelectricity coexist. A ferromagnetic configuration with magnetic moment of 4μB per formula unit has been reported with respect to the minimum total energy. Spontaneous polarization of 27.3 μC/cm2, caused mainly by the ferroelectric distortions of Ti, was evaluated using the berry phase approach in the modern theory of polarization. The Bi-6s stereochemical activity of long-pair and the ‘d0-ness’ criterion in off-centring of Ti were coexisting in the predicted new system. In view of the oxidation state of Bi3+, Fe2+, Ti4+, and O2− from the orbital-resolved density of states of the Bi-6p, Fe-3d, Ti-3d, and O-2p states, the valence state of Bi2FeTiO6 in the rhombohedral phase was found to be Bi3+2Fe2+Ti4+O6.  相似文献   

19.
Lanthanum ion (La3+)-substituted garnet nanoparticles Y3?x La x Fe5O12 (x = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0) were fabricated by a sol–gel method. Their crystalline structures and magnetic properties were investigated by using X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and Mössbauer spectrum. The XRD results show that samples of Y3?x La x Fe5O12 (0.0 ≤ x ≤ 0.8) are all single phase and the sizes of particles range from 32 to 65 nm. Those of Y2LaFe5O12 consisted of peaks from garnet and LaFeO3 structures. Compared to pure YIG, the saturation magnetization is larger when the La concentration x = 0.2. However, with increasing La concentration (x), it decreases obviously. Meanwhile, may be due to the enhancement of the surface spin effects, the saturation magnetization rises as the particle size is increased. Different from the pure YIG, the Mössbauer spectra of Y2.8La0.2Fe5O12 and Y2.2La0.8Fe5O12 are composed of four sets of six-line hyperfine patterns. The results tell us that the substitution of La3+ ions with large ionic radius (1.061 Å) will give rise to a microscopic structure distortion of the a- and d-sites to different degrees, and the Zeeman sextets from a- and d-sites begin to split into two sub-sextets, which is helpful to explain the phenomenon observed in the study of the magnetic property.  相似文献   

20.
A polarised neutron scattering investigation has been carried out on a powder sample of CuGeO3 within the temperature range of 1.5 K to 600 K. The magnetic scattering has been separated from all other contributions by using polarised neutrons and polarisation analysis and placed onto an absolute scale. At low temperatures the long wavelength components of the paramagnetic response are suppressed consistent with the formation of Cu dimers in which the magnetic moments are correlated antiferromagnetically. This form of the scattering persists to temperatures well above the dimerisation temperature T sp ∼ 14 K. However as the temperature is raised the intensity of the long wavelength spin fluctuations increases and above 150 K they are the dominant feature in the wave vector dependence of the response. At all temperatures the observed scattering extrapolates smoothly to the Q = 0 value given by the uniform susceptibility. Consequently the thermal variation of the uniform susceptibility arises from the evolution of the long wavelength magnetic fluctuations. At large wave vectors the energy dependence of the scattering revealed that the response occurs below 16 meV in agreement with the reported maximum magnetic excitation energy at the zone boundary in the ground state. However the total magnetic scattering is significantly less than that expected for a local moment system suggesting that the spectrum of thermal and quantum fluctuations overlap. Received 30 May 2000 and Received in final form 22 March 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号