首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oldfield  F. F.  Cowan  D. L.  Yasuda  H. K. 《Plasmas and Polymers》2000,5(3-4):235-253
Electron Spin Resonance (ESR) was used to study, at the molecular level, the plasma polymerization of trimethylsilane (TMS) and methane. Direct ESR analysis of the plasma coated Al substrate required the use of a novel ESR technique. TMS plasma deposit on Al showed a single broad resonance line near g = 2.003. The signal was stable in vacuum and decayed on exposure to air, with a significant fraction persisting for days. Results show that this signal arises from silicon dangling bonds. Identical TMS signals were observed from films prepared by the DC cathodic or the AF glow discharge method but their decay rates were different. In contrast, the deposition of methane produced two distinct types of carbon-based signals depending upon the method of deposition. TMS or CH4 films deposited by the DC cathodic method showed slow signals decay and high refractive indices value. While the use of Al as the substrate showed plasma-coating radicals, only substrate radicals were observed when PE was used as the substrate. The nature of radicals formed depends not only on the deposition method used but also on the substrate type.  相似文献   

2.
Plasma polymerization of trimethylsilane (TMS) was carried out and investigated in a direct current (dc) glow discharge. The formation of TMS plasma glow was carefully examined with optical photography as compared with an Ar dc glow discharge. It was found that there exists a significant difference in the nature of glow and how the glow is created in TMS glow discharge, which polymerizes or causes deposition, and that of monatomic gas such as Ar, which does not polymerize or deposit. In dc Ar discharge, the negative glow, which is the most luminous zone in the discharge, develops in a distinctive distance away from the cathode surface, and the cathode remains in the dark space. In a strong contrast to this situation, in TMS dc discharge, the primary glow that is termed as cathode-glow in this paper appears at cathode surface, while a much weaker negative glow as a secondary glow was observed at the similar location to where the Ar negative glow appears. The deposition results of plasma polymers and gas phase composition data of TMS in a closed reactor acquired by ellipsometry and residual gas analyzer (RGA) measurements clearly indicated that the cathode-glow in TMS glow discharge is mainly associated with chemically reactive species that would polymerize or form deposition, but the negative glow is related to species from simple gases that would not polymerize or deposit. Based on the glow location with respect to the cathode, it was deduced that the cathode-glow is due to photon emitting species created by molecular dissociation of the monomer that is caused by low energy electrons emanating from the cathode surface. The negative glow is due to the ionization and the formation of excited neutrals of fragmented atoms caused by high-energy electrons. Polymerizable species that would cause deposition of material (plasma polymers) are created mainly by the fragmentation of monomer molecules by low energy electrons, but not by electron-impact ionization of the monomer.  相似文献   

3.
The objective of this study was to examine some fundamental factors involved in the design and construction of the anode magnetron dc glow discharge processes as well as its performance in plasma cleaning and polymerization. Those advantages of anode magnetron include the capability of the magnetron to operate at low pressure, as well as decreasing the thickness of cathode dark space, i.e., the negative glow which contains a higher concentration of ions and active species was more closely to the cathode surface, which makes the plasma surface cleaning and polymerization an effective and uniform processes. The deposition rate at a given discharge power is increased by the presence of anode magnetrons, and is also much higher relative to rf and af. The refractive index of dc plasma film at a given polymer thickness (such as TMS, 70 nm, RI: 2.4) is higher than rf, af, and cascade arc plasma (RI: 1.6–1.7).  相似文献   

4.
Plasma polymerization of trimethylsilane (TMS) was carried out in a direct current (dc) glow discharge and was investigated by optical photography and plasma diagnostic techniques including optical emission spectroscopy and residual gas analysis. The nature of the glow formed in TMS discharge, which deposited plasma polymers, was significantly different from that of a simple gas such as Ar. In an Ar discharge, the dominant glow was the well known negative glow, which developed at a distinctive distance from the cathode, whereas the cathode surface remained in the dark space. In strong contrast to this situation, in TMS dc discharge the dominant or primary glow was the cathode glow, which appeared at the cathode surface. At a similar location where the Ar negative glow appeared, a very feeble glow as a secondary glow was also observed in TMS glow discharge. The deposition results and plasma diagnosis data evidently indicated that in TMS glow discharge, the cathode glow resulted from the low‐energy electron‐impact dissociation of TMS molecules that creates polymerizable species, but the negative glow was related to nonpolymerizable species such as hydrogen atoms and molecules. In this article, the cathode glow formed in glow discharges of organic compounds was designated as the dissociation glow according to its underlying plasma reactions. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1042–1052, 2004  相似文献   

5.
The effect of gas entry point on the plasma chemistry, ion energy distributions and resulting alumina thin film growth have been investigated for a d.c. cathodic arc with an aluminum cathode operated in an oxygen/argon atmosphere. Ions of aluminum, oxygen and argon, as well as ions originating from the residual gas are investigated, and measurements for gas entry at both the cathode and close to the substrate are compared. The latter was shown to result in higher ion flux, lower levels of ionised residual gas, and lower ion energies, as compared to gas inlet at the cathode. These plasma conditions that apply when gas entry at the substrate is used result in a higher film deposition rate, less residual gas incorporation, and more stoichiometric alumina films. The results show that the choice of gas entry point is a crucial parameter in thin film growth using reactive PVD processes such as reactive cathodic arc deposition.  相似文献   

6.
The performances of H(2)/O(2) metal-cation-free alkaline anion-exchange membrane (AAEM) fuel cells operated with commercially available Au/C and Ag/C cathodes are reported for the first time. Of major significance, the power density obtained with 4 mg cm(-2) Ag/C (60% mass) cathodes was comparable to that obtained with 0.5 mg cm(-2) Pt/C (20% mass) electrodes, whereas the performance when using the same Ag/C cathode in a Nafion-based acidic membrane electrode assembly (MEA) was poor. These initial studies demonstrate that the oxygen reduction electrokinetics are improved when operating Pt/C cathodes at high pH in AAEM-based fuel cells as compared with operation at low pH (in Nafion-based proton-exchange membrane fuel cells). The results of in situ alternating current impedance spectroscopy were core to the assignment of the source of the limited performances of the AAEM-based fuel cells as being the limited supply of water molecules to the cathode reaction sites. Minimizing the thickness of the AAEM improved the performances by facilitating back-transport of water molecules from the anode (where they are generated) to the cathode. The urgent need for development of electrode architectures that are specifically designed for use in AAEM-based fuel cells is highlighted.  相似文献   

7.
This paper investigates DC plasma polymerization kinetics by combining plasma parameters with film deposition rate in different conditions. The monomers hexamethyldisiloxane (HMDSO) and pyrrole were used. Both single and double Langmuir probes were used to measure the plasma parameters in pulsed power and continuous discharges. In order to avoid probe tip contamination, the probe was heated. Plasma density and electron temperature are reported. The electron current wave form is obtained in pulse power conditions. From the data, a plasma polymerization model is proposed. The conclusion is that the monomer molecules and free radicals adsorbed on the substrate surface react with activated sites produced by high energy ions bombarding the film, resulting in polymerization at the film surface.  相似文献   

8.
Sediment microbial fuel cells (SMFCs) have been used as renewable power sources for sensors in fresh and ocean waters. Organic compounds at the anode drive anodic reactions, while oxygen drives cathodic reactions. An understanding of oxygen reduction kinetics and the factors that determine graphite cathode performance is needed to predict cathodic current and potential losses, and eventually to estimate the power production of SMFCs. Our goals were to (1) experimentally quantify the dependence of oxygen reduction kinetics on temperature, electrode potential, and dissolved oxygen concentration for the graphite cathodes of SMFCs and (2) develop a mechanistic model. To accomplish this, we monitored current on polarized cathodes in river and ocean SMFCs. We found that (1) after oxygen reduction is initiated, the current density is linearly dependent on polarization potential for both SMFC types; (2) current density magnitude increases linearly with temperature in river SMFCs but remains constant with temperature in ocean SMFCs; (3) the standard heterogeneous rate constant controls the current density temperature dependence; (4) river and ocean SMFC graphite cathodes have large potential losses, estimated by the model to be 470 mV and 614 mV, respectively; and (5) the electrochemical potential available at the cathode is the primary factor controlling reduction kinetic rates. The mechanistic model based on thermodynamic and electrochemical principles successfully fit and predicted the data. The data, experimental system, and model can be used in future studies to guide SMFC design and deployment, assess SMFC current production, test cathode material performance, and predict cathode contamination.  相似文献   

9.
Plasma polymerization is a well-established process for the deposition of thin polymeric films on various types of substrates. The potential of this technique for promoting changes of substrate’s wettability constitutes one of the most basic and often reported applications. However, as novel technological demands emerge, and with it the range of available characterizations, plasma polymers are having their niche of applications and properties expanded. The properties of these materials are commonly tailored through the variation of polymer chemistry, postfunctionalization, or other post-treatment processes. That chemical versatility allows the use of plasma polymers in adhesives, water treatment, biomedicine, and many other fields. The creation of nanostructures via lithography or during the deposition process itself constitutes other dynamic fields for new plasma polymer materials. In the current review, the design of materials through plasma polymerization is addressed with the direction given by our expertise in maleic anhydride plasma polymers (MAPP). A non-exhaustive number of applications of plasma polymers is provided to non-specialists as an overview of the materials coming out from the field of this chemical-vapor deposition process. A complete analysis of the literature on maleic anhydride plasma polymers is also performed.  相似文献   

10.
Synthesis of aluminum nitride in transferred arc plasma furnaces   总被引:1,自引:0,他引:1  
Ultrafine particles of aluminum tnitride (AIN) arc produced by a transferred an plasma. Two devices are used: a transferred arc plasma on aluminum natal in nitrogen or nitrogenlammonia atmospheres, and a item concept of transferred arc plasma when, DC anode and cathode ares are coupled together above an alumintun melt. Equilibrium chemical compositions mere calculated. The temperature distributions in the plasma are measured hr emission spectroscopy Flit, powder, made from 99.8%, aluminum ingot, it as analyzed and confirmed to be 99.3%, of hexagonal phase aluminum nitride. In othertests, from 99.99% aluminum ingot, a translucent AIN vinter was obtained. The densification behavior was assessed by hot pressing and by pressureless sintering, with and without additives. The thermal conductivities are given.  相似文献   

11.
A coalesced high-intensity dc discharge is maintained between three cathodes and a single anode, stabilized by using resistors on each cathode leg. Jets of plasma gas are produced from either the cathode area or the anode area of the device. Cathode jets are generated by the self-induced pumping at the cathode tips and augmented by central gas injection. Arc voltage-current characteristics show classical convection-stabilized arc behavior. Anode heat transfer rates may be substantially increased by central gas injection toward the anode. Temperature fields in the coalesced, axially symmetric portion of the arc are determined spectrometrically and compared to those of a classical single-cathode free-burning arc.  相似文献   

12.
Sediment microbial fuel cells (SMFCs) could be used as power sources and one type of new technology for the removal of organic matters in sediments. In order to improve electrode materials and enhance their effect on the performance, we deposited multi-walled carbon nanotube (MWNT) on stainless steel net (SSN). Electrophoretic deposition technique as a method with low cost, process simplicity, and thickness control was used for this electrode modification and produced this novel SSN-MWNT electrode. The performances of SMFCs with SSN-MWNT as electrode were investigated. The results showed that the maximum power density of SMFC with SSN-MWNT cathode was 31.6 mW m?2, which was 3.2 times that of SMFC with an uncoated stainless steel cathode. However, no significant increase in the maximum power density of SMFC with SSN-MWNT anode was detected. Further electrochemical analysis showed that when SSN-MWNT was used as the cathode, the cathodic electrochemical activity and oxygen reduction rate were significantly improved. This study demonstrates that the electrophoretic deposition of carbon nanotubes on conductive substrate can be applied for improving the performance of SMFC.  相似文献   

13.
The electroinitiated polymerization of acrylamide (AA) has been studied in acetonitrile medium using tetrabutylammonium perchlorate (TBAP) as the electrolyte. Split-cell experiments showed that the polymer formation takes place both in the anode and the cathode compartments. The polymer yield depends on several factors such as the magnitude of the current flow, the duration of the electrolysis, the monomer concentration, the electrolyte concentration, the temperature of the solution, presence or absence of air, and finally whether or not the cell content was stirred. The current exponent of the polymerization was 0.28 with a reaction rate constant of 1.06 reaction % per hour. The IR and NMR spectra of the polymers suggest that the anodic polymer is polyacrylamide and the cathodic polymer is poly-β-alanine (? CH2? CH2? CO? NH? ). Based on the experimental results, a radical mechanism for the anodic polymerization and an anionic mechanism for the cathodic polymerization have been proposed.  相似文献   

14.
Lead dioxide (PbO2) was compared to platinum (Pt) as a cathode catalyst in a double-cell microbial fuel cell (MFC) utilizing glucose as a substrate in the anode chamber. Four types of cathodes were tested in this study including two PbO2 cathodes fabricated using a titanium base with butanol or Nafion® binders and PbO2 paste, one Pt/carbon cathode fabricated using a titanium base with a carbon–Pt paste, and a commercially available Pt/carbon cathode made from carbon paper with Pt on one side. The power density and polarization curves were compared for each cathode and cost estimates were calculated. Results indicate the PbO2 cathodes produced between 2 and 4× more power than the Pt cathodes. Furthermore, the PbO2 cathodes produced between 2 and 17× more power per initial fabrication or purchase cost than the Pt cathodes. This study suggests that cathode designs that incorporate PbO2 instead of Pt could possibly improve the feasibility of scaling up MFC designs for real world applications by improving power generation and lowering production cost.  相似文献   

15.
An extended conductive matrix facilitates a 100-fold enhancement in charge storage for reversible Fe(III/VI) super-iron thin films. These films were deposited, by electrochemical reduction of Na2FeO4, with an intrinsic high capacity 3 e- cathodic storage of 485 mAh g(-1). Whereas 3 nm Fe(III/VI) films exhibited a high degree of reversibility (throughout 100 charge/discharge cycles), thicker films had been increasingly passive toward the Fe(VI) charge transfer. Films were alternatively deposited on either smooth or on extended conductive matrixes composed of high-surface-area Pt, Ti, and Au and probed galvanostatically and via cyclic voltammetry. A 100 nm Fe(VI) cathode, on the extended conductive matrixes, sustained 100-200 reversible three-electrode charge/discharge cycles, and a 19 nm thin film cathode sustained 500 such cycles. With a metal hydride anode, full cell storage was probed, and a 250 nm super-iron film cathode film sustained 40 charge/discharge cycles, and a 25 nm film was reversible throughout 300 cycles. Fe(VI) salts exhibit higher cathodic capacity and environmental advantages, and the films are of relevance toward the next generation charge storage chemistry for reversible cathodes.  相似文献   

16.
Methane, mixed with argon, has been polymerized by means of a hollow-cathode discharge system. Two types of cathodes were studied; one was made of a solid solution of 81% tungsten and 19% platinum, while the other was of pure tungsten. Under identical operating conditions, a higher polymer yield was found in the case of the platinum cathode (90% against 70% for tungsten). The work function of the solid solution was estimated to be 6.3 eV, compared with 4.4 eV for tungsten. In terms of the data available, the thermionic current, which is the main source of energetic electrons, is about one order of magnitude lower for the solid solution cathode when compared with the tungsten cathode thermionic current. However, the polymer yield observed is higher in the former case. The concentration of the CH species in the hollow cathode was found to differ greatly for the cathodes tested and was about 5 times higher in the case of tungsten-platinum cathodes. Since no excited platinum vapor could be detected in the gas phase, the increase in CH concentration was attributed to a catalytic effect of the cathode inside surface. An evaluation of the plasma polymer deposition rate yields 70 nm·s–1 for the platinum-tungsten type hollow cathode and 42 nm·s–1 for the tungsten one. In both cases, the deposition rate is much higher than those obtained from the most widely used methods for plasma polymer deposition (0.10–1.0 nm·s–1) implying methane-argon mixtures, and is comparable to the results obtained with a new type of plasma polymer deposition reactor described in the literature.  相似文献   

17.
Hexagonal arrangement of iron oxide nanoparticles was fabricated by utilizing a single-layered film of diblock copolymer micelles. The synthesis was directly performed on the solid substrate by oxygen plasma with preserving the dimensional order of micelles so that separate procedures for synthesis and deposition of nanoparticles were not necessary. Since the oxygen plasma treatment also eliminated polymers, pure patterns of iron oxide nanoparticles were obtained. Moreover, easy control over the size of nanoparticles enabled us to selectively create a ferrimagnetic or a superparamagnetic pattern of iron oxide nanoparticles without altering the fabrication process.  相似文献   

18.
The Clostridium acetobutylicum [FeFe]-hydrogenase HydA has been investigated as a hydrogen production catalyst in a photoelectrochemical biofuel cell. Hydrogenase was adsorbed to pyrolytic graphite edge and carbon felt electrodes. Cyclic voltammograms of the immobilized hydrogenase films reveal cathodic proton reduction and anodic hydrogen oxidation, with a catalytic bias toward hydrogen evolution. When corrected for the electrochemically active surface area, the cathodic current densities are similar for both carbon electrodes, and approximately 40% of those obtained with a platinum electrode. The high surface area carbon felt/hydrogenase electrode was subsequently used as the cathode in a photoelectrochemical biofuel cell. Under illumination, this device is able to oxidize a biofuel substrate and reduce protons to hydrogen. Similar photocurrents and hydrogen production rates were observed in the photoelectrochemical biofuel cell using either hydrogenase or platinum cathodes.  相似文献   

19.
The competitive ablation and polymerization (CAP) principle relates the ablation of materials in plasma to the deposition of materials in plasma. Plasma polymerization and plasma treatment cannot be elucidated without consideration of the fragmentation of molecules in both the gas and solid phases. The general fragmentation tendency follows a plasma sensitivity series of the elements involved that is based on element electronegativity. When consecutive plasma treatments, sequential plasma polymerization, or a combination of plasma treatment and plasma polymerization are carried out in the same reactor, factors that are often not considered in an ordinary individual process become crucial. The CAP principle and the concept of a plasma sensitivity series of the elements explain the rather complicated and interrelated influences of fragmented elements in the plasma deposition of materials. Plasma polymers should be considered a mixture of oligomers and polymeric networks. The oligomer content in a plasma‐polymerized layer is vitally important to the adhesion of the plasma polymer to the substrate as well as to any subsequent coating applied to the layer of the plasma polymer. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 943–953, 2000  相似文献   

20.
Changes of the solution pH due to exposure by high-voltage electric pulses   总被引:1,自引:0,他引:1  
The change of the pH of a NaCl solution (139-149 mM NaCl) buffered with 5-15 mM sodium phosphates (pH 7.4) during electromanipulation was studied. It has been determined that an increase in the pH value of electroporation solution of a whole chamber volume, caused by the application of electric field pulses, commonly used in cell electromanipulation procedures, can exceed 1-2 pH units. Several materials for the cathode were tested. In all cases a stainless steel anode was utilized. The aluminum cathode gave a two-fold greater DeltapH in comparison with platinum, copper or stainless steel cathodes. In addition, a substantial release of aluminum (up to 1 mg/l) from the cathode was observed. It has also been found that the shift in pH depended on the medium conductivity: DeltapH of the solution, in which sucrose was substituted for NaCl, was about 5 times less. On the basis of the results obtained here, to avoid the plausible undesirable consequences of the cathodic electrolysis processes, in particular under the conditions of strong electric treatment, it could be recommended that chambers with aluminum electrodes not be utilized and one should use strongly buffered solutions of low conductivity and alternating current (sine or square wave) bipolar electric pulses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号