首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The aim of this study was to examine a pulmonary gadobutrol resorption after inhalation. An examination of 16 young swine, which were given different amounts of gadobutrol through inhalation, was performed. A measurement of the signal elevation in peripheral lung tissue as well as in the thoracic aorta was made using a T(1)-weighted FLASH-3D sequence in a 1.5 T magnetic resonance imaging (MRI) machine. Twenty minutes after gadobutrol application, a steep signal elevation in the aorta was reported, as well as a plateau phase after 45 min. The signal elevation in peripheral lung tissue after inhalation increased to a mean of 33.9%. The concurrent signal elevation of the abdominal aorta was 137.4%. The evaluation of an intravascular signal elevation after gadobutrol inhalation opens the possibility to evaluate and obtain lung diffusion with MRI.  相似文献   

2.
INTRODUCTION: Inhomogeneity of magnetic fields, both B(0) and B(1), has been a major challenge in magnetic resonance imaging (MRI). Field inhomogeneity leads to image artifacts and unreliability of signal intensity (SI) measurements. This work proposes and shows the feasibility of generating equilibrium signal intensity (SI(Eq)) maps that can be utilized either to speed up relaxation-rate measurement or to enhance image quality and relaxation-rate-based weighting in various applications. METHODS: A 1.5-T MRI scanner was used. In canines (n=4), myocardial infarction was induced, and 48 h after the administration of 0.05 mmol kg(-1) Gd(ABE-DTTA), a contrast agent with slow tissue kinetics, in vivo R(1) mapping was carried out using an inversion recovery (IR)-prepared, fast gradient-echo sequence with varying inversion times (TIs). To test the SI(Eq) mapping method without the confounding effects of motion and blood flow, we carried out ex vivo R(1) mapping after the administration of 0.2 mmol kg(-1) Gd(DTPA) using an IR-prepared, fast spin-echo sequence in another group of dogs (n=2). R(1,full) maps and SI(Eq) maps were generated from the data from both sequences by three-parameter nonlinear curve fitting of the SI versus TI dependence. R(1,full) maps served as the reference standard. Raw IR images were then divided by the SI(Eq) maps, yielding corrected SI maps (COSIMs). Additionally, R(1) values were calculated from each single-TI image separately, using the SI(Eq) value and a one-parameter curve-fitting procedure (R(1,single)). Voxelwise correlation analysis was carried out for the COSIMs and the R(1,single) maps, both versus the standard R(1,full) maps. Deviations of R(1,single) from R(1,full) were statistically evaluated. RESULTS: In vivo, COSIM versus R(1,full) showed significantly (P<.05) better correlation [correlation coefficient (CC)=0.95] than SI versus R(1,full) with a TI=700-800 ms, which is 200-300 ms longer than the tau(null) (500 ms) of viable myocardium. With such TIs, SI versus R(1,full) yielded CCs of 0.86-0.88. R(1,single) versus R(1,full) yielded a peak CC of 0.96 at TI=700-900 ms. Mean deviations of R(1,single) from R(1,full) were below 5% for TIs between 500 and 1000 ms. Ex vivo, where tau(null) was 300 ms, the advantage of correction with SI(Eq) was not in the improvement of linear correlation but more in the reduction of scatter. Peak CCs for SI versus R(1,full) and COSIM versus R(1,full) at TI=500 ms were 0.96 for both. The ex vivo CC for R(1,single) versus R(1,full) at TI=500 ms was 0.98. Mean deviations of R(1,single) from R(1,full) were below 5% for TIs between 400 and 700 ms. CONCLUSIONS: Once the corresponding SI(Eq) map is obtained from a control stack, R(1) can be obtained accurately, using only a single IR image and without the need for a stack of TI-varied images. This approach could be applied in various dynamic MRI studies where short measurement time, once the dynamics has started, is of essence. When using this method with IR-prepared T(1)-weighted images, it is essential that the single TI be chosen such that the longitudinal relaxation in all voxels of interest would have passed tau(null). SI(Eq) maps are also useful in eliminating confounders from MR images to allow obtaining SI values that reflect more faithfully the relaxation parameter (R(1)) sought.  相似文献   

3.
The tissue concentration of an extravascularly distributed MRI contrast agent required to achieve a 20% change in the MRI signal intensity (SI) of skeletal muscle was determined using radiolabeled gadoteridol administered to nephrectomized mice. This minimal change in the quantified SI was reliably detected qualitatively in the MR muscle images. MR images of muscle were acquired following each intravenous injection of six sequential doses of 0.8 micromol of 153Gd-labeled gadoteridol. A 2.0 T imaging spectrometer and a T1-weighted spin-echo pulse sequence were used to acquire the MR images. After imaging, the injected 153Gd in muscle was measured, and the 153Gd assay results were used to determine the gadoteridol concentration in muscle following each injection. The muscle concentrations of gadoteridol were then correlated to the quantified enhanced MR SI of muscle. Using the 20% factor, it was concluded that the amount of gadoteridol necessary to achieve a reliable change in the SI of muscle was 33+/-10 nmol/g-skeletal muscle.  相似文献   

4.
Twenty-seven patients with soft-tissue tumors were examined with a Picker 0.15-tesla resistive magnet and by computed tomography (CT). In all but one patient, MRI was better than or equal to CT in defining the anatomic extent of the tumor. We could determine whether major vascular structures were engulfed by the tumor in 80% of the MRI examinations but only in 62% of the CT scans. MRI and CT were equally effective in determining the presence or absence of bony invasion. The MRI images of all the tumors showed increased signal intensity relative to normal muscle when spin-echo (SE) sulse sequences with long repeat times were used (SE: echo time [TE], 60 ms; repetition time [TR], 2,000 ms). When T1 weighted pulse sequences were used (SE: TE, 30 ms; TR, 500 ms or inversion recovery: inversion time, 500 ms; TE, 40 ms; TR, 2,000 ms) the malignant tumors showed decreased signal intensity compared to normal muscle. Only lipomas showed high signal intensity on both T1 and T2 weighted pulse sequences.  相似文献   

5.
Purpose: The aim of this pilot study was to evaluate a magnetically labeled water perfusion imaging technique as a non-contrast-enhanced approach to demonstrate the uterine artery, its branches, and to assess the cervical uterine blood flow in healthy volunteers and in patients with advanced uterine cervical carcinoma (FIGO IIB-IVA).Methods and Materials: Seven healthy volunteers (mean age, 29 years) and twenty-two patients (mean age, 52 years) with advanced cancer of the uterine cervix (FIGO IIB-IVA) were prospectively examined by magnetically labeled water perfusion imaging at different inversion delay times (300–900 ms). The magnetic resonance imaging (MRI) findings of all patients were matched to the findings of contrast-enhanced dynamic MRI and multiple biopsies (n = 5) and/or surgical whole mount specimens (n = 17), which were available in all patients.Results: The uterine artery was well visualized with short inversion delay times of 300–500 ms. It was characterized as single or multiple helical loops before dividing into its intracervical branches. The intracervical branching was observed at inversion delay times of 500–700 ms. With longer inversion delay times, arterial signal enhancement disappeared and cervical tissue enhancement was noted. Enhancement of benign tissue was observed at inversion delay times of 1100–1700 ms and in malignant tissue at shorter inversion delay times of 900–1300 ms. The maximum of this diffuse signal enhancement of benign tissue was seen at inversion delay times of 1500 ms (1100-1700 ms) in malignant tissue at significantly (p < 0.5) shorter inversion delay times of 1100 ms (900–1300 ms).Conclusion: Our preliminary results show that the vascular supply and blood flow of the normal uterine cervix and of advanced cervical cancer can be assessed by magnetically labeled water perfusion imaging and that malignant cervical tissue is earlier and stronger perfused than normal cervical tissue.  相似文献   

6.
Gadolinium-DTPA-enhanced MRI of intraocular tumors   总被引:1,自引:0,他引:1  
The value of gadolinium-enhanced MRI in 30 patients with intraocular lesions has been evaluated. Seventeen patients had a uveal melanoma, two a ciliary body melanoma, three had uveal metastases, one lymphoma, four had senile macula degenerations, and three uveal nevi. Twelve of 17 patients with melanoma were followed up by MRI after ruthenium plaque therapy on 2–4 occasions. Melanomas showed high precontrast signal intensities and only a slight enhancement after intravenous Gd-DTPA was given. After ruthenium plaque therapy precontrast signal intensities (SI) decreased while a moderate signal increase on postcontrast scans was noted. Scars or tumor residues were better delineated on enhanced images. All other tumors than melanotic melanomas showed low SI on precontrast scans and a high signal increase after Gd-DTPA administration. Small amelanotic tumors were better delineated on postcontrast scans. In addition Gd-DTPA-enhanced MRI allowed differentiation between tumor and hemorrhage. No signal increase after Gd-DTPA application was seen in subretinal or vitreous hemorrhages of varying ages.  相似文献   

7.
Sodium T2*-weighted MR imaging of acute focal cerebral ischemia in rabbits   总被引:2,自引:0,他引:2  
Changes in T2*-weighted tissue sodium (23Na) signal following acute ischemia may help to identify necrotic tissue and estimate the duration of ischemia. Sodium signal was monitored in a rabbit model of acute (0-4 h) focal cerebral ischemia, using gradient echo 23Na MR images (echo time = 3.2 ms) acquired continuously in 20-min intervals on a 4-Tesla MRI. 2,3,5-Triphenyl-tetrazolium chloride staining was used to identify regions of necrosis. In necrotic tissue, average 23Na image signal intensity decreased by 11% +/- 8% during the first 40 min of ischemia followed by a linear increase (0.19%/min) to 25% +/- 14% greater than baseline after 4 h of ischemia. The time course of 23Na signal change observed in necrotic tissue following focal ischemia in this rabbit model is consistent with an initial decrease in 23Na T2* relaxation time followed by an increase in tissue sodium concentration and provides further evidence that tissue 23Na signal may offer unique information regarding tissue viability that is complementary to other MR imaging techniques.  相似文献   

8.

Purpose

The purpose was to describe magnetic resonance imaging (MRI) findings of breast cancer liver metastasis using gadoxetic acid (Gd-EOB-DTPA) with an emphasis on the added value of the hepatobiliary phase (HBP).

Material and methods

Nine patients with 13 liver metastases were included in the study after the medical records of 29 breast cancer patients who underwent Gd-EOB-DTPA-enhanced MRI between February 2008 and June 2010 were reviewed. The diagnoses of liver metastasis were established by percutaneous liver biopsy or surgery and on the basis of image findings. Two radiologists retrospectively evaluated signal intensity (SI) and sizes of metastases and patterns of enhancement in an HBP. The SI ratio was calculated as the SI of the central hyperintense portion in “target” lesions divided by the SI of nearby normal liver parenchyma on the HBP. We also measured apparent diffusion coefficient (ADC) values from Diffusion Weighted Image (DWI).

Results

Liver metastases were all hypointense [n=13/13 (100%)] on T1-weighted imaging (WI), and many lesions had a “target” appearance with a central high SI and a peripheral low SI rim (47%) on T2WI. Dynamic study showed rim enhancement on the arterial phase (85%) and a “target” appearance, consisting of a central enhancing portion with peripheral washout or hypointense rim, on the HBP (62%). The mean SI ratio was 0.7. The mean ADC value of “target” appearing metastases was 1.25 (×10−3 mm2/s; range 1.3–1.6) compared with a mean value of 0.8 (×10−3 mm2/s; range 0.8–1.4) in homogeneous defect on the HBP. There was statistically significant difference (P<.05).

Conclusion

Breast cancer liver metastases commonly demonstrated as a peripheral ring enhancement on arterial dominant phase and a target sign with a central round enhancing portion and a peripheral hypointense rim on the HBP.  相似文献   

9.
The effects of 5-fluorouracil (5FU, 150 mg/kg, ip) on subcutaneously implanted radiation-induced fibrosarcoma (RIF-1) tumors were monitored by in vivo (1)H MRI to evaluate the water apparent diffusion coefficient (ADC), by single-quantum (SQ) and triple-quantum-filtered (TQF) (23)Na MRI to evaluate compartmental Na(+) content and by positron emission tomography (PET) to evaluate 2-[(18)F]fluoro-2-deoxy-d-glucose (FDG) uptake in the tumor. The MRI experiments were performed on untreated control and treated mice once before and then daily for 3 days after treatment. The PET experiments were performed on separate groups of age- and tumor-volume-matched animals once before and then 3 days after treatment. Tumor volumes significantly decreased in treated animals 2 and 3 days posttreatment. At the same time points, in vivo MRI measurements showed an increase in both total tissue SQ (23)Na signal intensity (SI) and water ADC in treated tumors while control tumors showed no change in these parameters. TQF (23)Na SI and FDG uptake were significantly lower in treated tumors compared with control tumors 3 days after 5FU treatment. The correlated increases in total tissue (23)Na SI and water ADC following chemotherapy reflect an increase in extracellular space, while the lower TQF (23)Na SI and FDG uptake in treated tumors compared with control tumors suggest a shift in tumor metabolism from glycolysis to oxidation and/or a decrease in cell density.  相似文献   

10.
《Magnetic resonance imaging》1998,16(9):1005-1012
The objective of this study was to investigate the role of contrast enhancement using a three-dimensional (3D) phase-contrast (PC) magnetic resonance (MR) sequence (3D PC-MRA) and to assess the value of a dynamic MR perfusion study of the kidneys to determine the hemodynamic relevance of unilateral renal artery stenosis (RAS). Seventeen patients with unilateral RAS were examined on a standard 1.0 T imaging system using a phase shift and magnitude sensitive 3D PC sequence (TR = 160 ms, TE = 9 ms, venc. 30 cm/s). Following the initial pre-contrast 3D PC-MRA a dynamic first pass perfusion study was performed using a Turbo-FLASH 2D sequence (TR = 4.5 ms, TE = 2.2 ms, TI = 400 ms) after bolus injection of 0.15 mmol gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA)/kg body weight. The 3D PC-MRA was then repeated during infusion of 0.15 mmol Gd-DTPA/kg body weight. Evaluation by three independent readers was based on maximum intensity projection images. Source images were rendered on request. Signal intensity (SI) over time curves of the renal cortex were obtained from the dynamic perfusion study and analyzed for maximum signal enhancement as well as temporal relationship to the aortic SI curve. Results from 3D PC-MRA revealed a sensitivity (pre-/post-contrast) of 100%/89%, specificity of 76%/63%, positive predictive value of 80%/69%, negative predictive value of 90%/78%, and accuracy of 85%/75% (p = 0.07). Interobserver agreement was κ = 0.61/κ = 0.47 (pre/post Gd-DTPA), respectively. Increased signal-to-noise was present in all segments of the renal arteries post contrast (p = 0.0003). This came along with image degradation due to aliasing and elevated SI of venous flow that partially obscured the renal arteries. Dynamic SI curves showed a significantly decreased maximum SI in RAS (p = 0.01–0.001). A temporal delay of cortical signal intensity enhancement could not be confirmed in this setting. Gd-enhanced 3D PC-MRA did not yield a superior diagnostic value in the diagnosis of RAS compared to pre-contrast measurements. Dynamic perfusion imaging of the kidneys, in combination with 3D PC-MRA, can contribute additional information in suspected unilateral RAS.  相似文献   

11.
The paper describes an application of machine learning techniques to identify expiratory and inspiration phases from the audio recording of human baby cries. Crying episodes were recorded from 14 infants, spanning four vocalization contexts in their first 12 months of age; recordings from three individuals were annotated manually to identify expiratory and inspiratory sounds and used as training examples to segment automatically the recordings of the other 11 individuals. The proposed algorithm uses a hidden Markov model architecture, in which state likelihoods are estimated either with Gaussian mixture models or by converting the classification decisions of a support vector machine. The algorithm yields up to 95% classification precision (86% average), and its ability generalizes over different babies, different ages, and vocalization contexts. The technique offers an opportunity to quantify expiration duration, count the crying rate, and other time-related characteristics of baby crying for screening, diagnosis, and research purposes over large populations of infants.  相似文献   

12.
Specific MRI techniques have been used to determine the dimensional and compositional properties of atherosclerotic lesions in carotid endarterectomy tissues. A quantitative comparison of areas of specific features in typical tissue segments was performed using MR images and histologic images. The mean difference for the measurements by the two methods was 4.5% for the total vessel, 5.3% for the internal carotid artery lumen, and 5.0% for the external carotid lumen. For other less abundant components, the mean difference was 14.2%. For direct characterization, individual tissue components were isolated by microdissection and their T1 and T2 relaxation times measured. Highly calcified areas typically had rather short T1 (452-837 ms) and short T2 (10.4-18.4 ms). In contrast, regions enriched in lipid had much longer T1 (1,380-1,480 ms) and longer T2 (35.3-49.0 ms). Other components such as thrombus had intermediate T1 (1,180 ms) and short T2 (15.4 ms). T2 parametric imaging was used as a complementary approach for segmentation and quantitation of tissue components. In fresh tissue, several different components exhibited different T2 ranges: calcified/solid lipid (13-18 ms). cellular/ECM (9-30 ms), fluid lipid (35-40 ms): fibrous (50-60 ms). These results demonstrate the utility of MRI for identifying and quantifying specific components of atherosclerotic plaque ex vivo, and suggest its value for these measurements in vivo as well.  相似文献   

13.
PurposeTo determine the capability of Gadolinium-free arterial spin labelling (ASL) sequences as novel, contrast-free, non-invasive alternative perfusion imaging method to differentiate prostate cancer (PCA) from benign prostate tissue compared to conventional DCE MRI.MethodsThirty men with histologically confirmed PCA were included in this prospectively enrolled single center cohort study. All patients received multiparametric MRI (T2, DWI, DCE) at 3 T with additional ASL of the PCA lesion. Primary endpoint was differentiability of PCA versus benign prostate tissue by signal intensities (SI) and contrast ratios (CR) in ASL in comparison to DCE. For DCE also Signal-Enhancement-Ratio (SER) of native and early contrast enhancement SI was assessed. Secondary objectives were differences regarding PCA localisation in peripheral (PZ) or transition zone (TZ) and PCA detection.ResultsIn both, ASL and DCE, average SI of PCA differed significantly from SI in benign tissue in the TZ and PZ (p < 0,01, respectively). ASL had significantly higher CR discerning PCA and benign tissue in PZ and TZ (PZ = 5.19; TZ = 6.45) compared to DCE SI (PZ = 1.61; TZ = 1.43) and DCE SER (PZ = 1.59; TZ = 1.43) (p < 0.01, respectively). In subjective evaluation, PCA could be detected in ASL in 28 patients, compared to 29 in DCE.ConclusionASL had significantly higher CR differentiating PCA from benign tissue in PZ and TZ compared to DCE. Visual detection of PCA does not differ significantly between the two sequences. As perfusion gadolinium-based contrast media is seen more critical in the last few years, ASL seems to be a promising alternative to DCE in PCA detection.  相似文献   

14.
Venous thrombus is subsequently organized and replaced by fibrous connective tissue. However, the sequential changes in venous thrombi are not reliably detected by current noninvasive diagnostic techniques. The purpose of this study is to reveal whether magnetic resonance (MR) can detect venous thrombus, define thrombus age and predict thrombolytic responses. Thrombus in the rabbit jugular vein was imaged with a 1.5-T MR system at 4 h and at 1, 2 and 4 weeks using three-dimensional (3D) fast asymmetric spin echo T2-weighted (T2W) and 3D-gradient echo T1-weighted (T1W) sequences. The jugular veins were histologically assessed at each time point. Magnetic resonance imaging (MRI) was also performed in vivo before and 30 min after tissue plasminogen activator (t-PA) administration. The thrombi in MRI were comparable in size to histological sections. The signal intensity (SI) of thrombi at 4 h was heterogeneously high or low on T2W or T1W images, respectively. The SI of thrombi on T2W images decreased time-dependently, but increased on T1W images at 1 and 2 weeks. Morphological analysis showed time-dependent decreases in erythrocyte, platelet and fibrin areas and time-dependent increases in smooth muscle cell, macrophage, collagen and iron areas. The t-PA administration significantly decreased thrombus volume at 4 h but not at 1, 2 and 4 weeks. Venous thrombosis can be reliably and noninvasively detected by MRI. Measurement of SI might support assessments of thrombus age and thrombolytic response.  相似文献   

15.
The analysis of tracheal noise of forced expiration is one of the promising methods for the diagnosis of bronchial patency disorders, which are a sign of such widespread diseases as bronchial asthma and chronic obstructive bronchitis. The aim of this study is the verification and refinement of the acoustic model of forced expiration (Korenbaum et al., 1998) on the basis of a statistical analysis of clinical experimental data. A sample of 127 volunteers (from 18 to 74 years old) is used as an experimental statistical model: 34 persons suffering from bronchial asthma, 21 persons suffering from chronic obstructive bronchitis, 29 healthy persons, and 43 persons liable to developing the aforementioned diseases. The following parameters are analyzed: the total duration of noise of forced expiration at the trachea, the duration of wheeze of forced expiration with frequencies from 400 to 600 Hz, and the presence of narrowband high-frequency (over 600–700 Hz) spectral components at the end of forced expiration and during the whole expiration process. Reliable differences in the parameters of tracheal noise are revealed in the groups under study. The high prognostic value (a sensitivity of 89% and a specificity of 86%) of the parameters of tracheal noise of forced expiration, which were suggested a priori as the diagnostic parameters on the basis of the acoustic model (Korenbaum et al., 1998), indirectly confirms the adequacy of this model. The biomechanical-pathophysiological interpretation of the occurrence of acoustic deviations in the experimental sample groups provides an opportunity to relate the parameters of tracheal noise of forced expiration to the degree of mechanical nonuniformity of the lungs.  相似文献   

16.
It has previously been observed that during isometric dorsiflexion exercise, the time course of T2-weighted signal intensity (SI) changes is spatially heterogeneous. The purpose of this study was to test the hypothesis that this spatial heterogeneity would increase at higher contraction intensities. Eight subjects performed 90-s isometric dorsiflexion contractions at 30% and 60% of maximum voluntary contraction (MVC) while T2-weighted (repetition time/echo time=4000/35 ms) images were acquired. SI was measured before, during and after the contractions in regions of interest (ROIs) in the extensor digitorum longus (EDL) muscle and the deep and superficial compartments of the tibialis anterior (D-TA and S-TA, respectively). For all ROIs at 30% MVC, SI changes were similar. The maximum postcontraction SI was greater than the SI during exercise. At 60% MVC, SI changes during contraction were greater in the S-TA than in the D-TA and EDL. For the EDL and D-TA, the maximum postcontraction SI was greater than those during exercise. For the S-TA, the maximum postcontraction change was greater than the changes at t=8, 20 and 56 s but not the end-exercise value. We conclude that spatial heterogeneity increases during more intense dorsiflexion contractions, possibly reflecting regional differences in perfusion or neural activation of the muscle.  相似文献   

17.
The temporal and spatial characteristics of oxygenation-sensitive MRI responses to very brief visual stimuli (five Hz reversing black and white checkerboard pattern versus darkness) were investigated (nine subjects) by means of serial single-shot gradient-echo echo-planar imaging (2.0 T, TR = 400 ms, mean TE = 54 ms, flip angle 30°). The use of a 0.2-s stimulus and a 90-s control phase resulted in an initial latency phase (about 2 s, no signal change), a positive MRI response (2.5% signal increase peaking at 5 s after stimulus onset), and a post-stimulus undershoot (1% signal decrease peaking at 15 s after stimulus onset) lasting for about 50–60 s. The finding that a subsecond visual stimulus elicits both a strong positive MRI response and a long-lasting undershoot provides further evidence for the neuronal origin of slow signal fluctuations seen in the absence of functional challenge and their utility for mapping functional connectivity. The additional observation that a reduction of the inter-stimulus control phase from 90 s to 9.8 s does not seem to affect the spatial extent of cortical activation in pertinent maps is of major relevance for the design and analysis of “event-related” MRI studies.  相似文献   

18.
A comparative study of 11 pneumonectomized patients was undertaken in order to evaluate the respective advantages and drawbacks of MRI and CT in post-operative follow-up. Nine patients were healthy at the time of the study and two presented with tumor recurrence. MR examination included 500/40 ms axial, and frontal 800/40-80 ms or 1300/60-120 ms nongated spin echo sequences. MRI was slightly more efficient in identifying vascular stump and main nodal stations, and detected better than CT tumoral and metastatic spread in cancer recurrences. It was as informative as CT in evaluating postpneumonectomy space and bronchial stump. It was noncontributory in the detection of calcifications. Although clips were visible with MRI, their location was less definite than with CT, a potential pitfall when radiotherapy is planned.  相似文献   

19.
Hyperpolarized 83Kr has previously been demonstrated to enable MRI contrast that is sensitive to the chemical composition of the surface in a porous model system. Methodological advances have lead to a substantial increase in the 83Kr hyperpolarization and the resulting signal intensity. Using the improved methodology for spin exchange optical pumping of isotopically enriched 83Kr, internal anatomical details of ex vivo rodent lung were resolved with hyperpolarized 83Kr MRI after krypton inhalation. Different 83Kr relaxation times were found between the main bronchi and the parenchymal regions in ex vivo rat lungs. The T1 weighted hyperpolarized 83Kr MRI provided a first demonstration of surface quadrupolar relaxation (SQUARE) pulmonary MRI contrast.  相似文献   

20.
The objective of this study was to measure T21 values of the normal human lung in vivo during breathhold using a rapid gradient-echo sequence with ultra-short echo times (TE). A sagittal slice of the right lung was imaged in six volunteers with various TE ranging from 0.5 ms to 5 ms using a clinical 1.5 Tesla MR scanner. T21 values were calculated in a region of interest in the dependent and non-dependent lung. In the dependent lung, T21 values of 1.1 ms ± 0.15 ms were measured, and in the non-dependent lung, 0.86 ms ± 0.11 (p < 0.01). T21 measurements of the normal human lung during breathhold are feasible with a clinical MR unit. The short T21 values require the use of very short TE times (<2.5 ms) in gradient-echo sequences to obtain adequate signal intensity from lung tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号