首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effective operator approach is applied to the calculation of both line positions and line intensities of the (13)C(16)O(2) molecule. About 11 000 observed line positions of (13)C(16)O(2) selected from the literature have been used to derive 84 parameters of a reduced effective Hamiltonian globally describing all known vibrational-rotational energy levels in the ground electronic state. The standard deviation of the fit is 0.0015 cm(-1). The eigenfunctions of this effective Hamiltonian have then been used in fittings of parameters of an effective dipole-moment operator to more than 600 observed line intensities of the cold and hot bands covering the nu(2) and 3nu(2) regions. The standard deviations of the fits are 3.2 and 12.0% for these regions, respectively. The quality of the fittings and the extrapolation properties of the fitted parameters are discussed. A comparison of calculated line parameters with those provided by the HITRAN database is given. Finally, the first observations of the 2nu(1) + 5nu(3) and nu(1) + 2nu(2) + 5nu(3) absorption bands by means of photoacoustic spectroscopy (PAS) is presented. The deviations of predicted line positions from observed ones is found to be less than 0.1 cm(-1), and most of them lie within the experimental accuracy (0.007 cm(-1)) once the observed line positions are included in the global fit. Copyright 2000 Academic Press.  相似文献   

2.
The 3nu(1) and 3nu(1) + nu(3) bands of propyne have been recorded at Doppler-limited resolution by Fourier transform spectroscopy and intracavity laser absorption spectroscopy, respectively. The two bands show a mostly unperturbed J rotational structure for each individual K subband. However, as a rule the K structure ordering is perturbed in overtone transitions of propyne and different effective parameters associated with each K subband have been determined. From the vibrational energy levels, a value of -6.6 cm(-1) has been obtained for the x(13) cross anharmonicity in perfect agreement with the origins of the nu(1) + nu(3) and 2nu(1) + nu(3) combination bands estimated from the FTIR spectrum. Hot bands from the v(9) = 1 and v(10) = 1 levels associated with the 3nu(1) + nu(3) combination band have been partly rotationally analyzed and the retrieved values of x(39) and x(3,10) are in good agreement with literature values. Finally, the 4nu(1) + nu(9) - nu(9) band centered at 12 636.6 cm(-1) has been recorded by ICLAS. The red shift of this hot band relative to 4nu(1) and the DeltaB(v) value are discussed in relation to the anharmonic interaction between the 4nu(1) and 3nu(1) + nu(3) + nu(5) levels. Copyright 2000 Academic Press.  相似文献   

3.
Using new high-resolution Fourier transform spectra recorded at the University of Denver in the 2-μm region, a new and more extended analysis of the 2nu(1) + nu(3) and 3nu(3) bands of nitrogen dioxide, located at 4179.9374 and 4754.2039 cm(-1), respectively, has been performed. The spin-rotation energy levels were satisfactorily reproduced using a theoretical model that takes into account both the Coriolis interactions between the spin-rotation energy levels of the (201) vibrational "bright" state with those of the (220) "dark" state. The interactions between the (003) bright state with the (022) dark state were similarly treated. The spin-rotation resonances within each of the NO(2) vibrational states were also taken into account. The precise vibrational energies and the rotational, spin-rotational, and coupling constants were obtained for the two dyads {(220), (201)} and {(022), (003)} of the (14)N(16)O(2) interacting states. From the experimental line intensities of the 2nu(1) + nu(3) and 3nu(3) bands, a determination of their vibrational transition moment constants was performed. A comprehensive list of line positions and line intensities of the {2nu(1) + 2nu(2), 2nu(1) + nu(3)} and the {2nu(2) + 2nu(3), 3nu(3)} interacting bands of (14)N(16)O(2) was generated. In addition, assuming the harmonic approximation and using the Hamiltonian constants derived in this work and in previous studies (A. Perrin, J.-M. Flaud, A. Goldman, C. Camy-Peyret, W. J. Lafferty, Ph. Arcas, and C. P. Rinsland, J. Quant. Spectrosc. Radiat. Transfer 60, 839-850 (1998)), we have generated synthetic spectra for the {(022), (003)}-{(040), (021), (002)} hot bands at 6.3 μm and for the {(220), (201)}-{(100), (020), (001)} hot bands at 3.5 μm, which are in good agreement with the observed spectra. Copyright 2000 Academic Press.  相似文献   

4.
High-resolution FTIR spectra of 1,1,1-trifluoroethane (HFC-143a) have been recorded in the region from 1370 to 1470 cm(-1) with an unapodized resolution of 0.0016 cm(-1) at room temperature and of 0.004 cm(-1) at 183 and 100 K. The two main infrared active bands of A(1) symmetry have been shown to be nu(2) at 1407.5 cm(-1) and nu(4) + nu(5) at 1440.5 cm(-1). With the aid of Raman spectra, the two infrared inactive bands of E symmetry in this spectra region have been shown to be nu(8) at 1457.5 cm(-1) and nu(6) + nu(9) at 1446.2 cm(-1). The nu(2) band was analyzed as an isolated band, whereas the nu(4) + nu(5) band was analyzed as part of the triad nu(4) + nu(5), nu(6) + nu(9), and nu(8). Copyright 2000 Academic Press.  相似文献   

5.
High-resolution (Deltavarsigma = 2.3 and 2.9 x 10(-3) cm(-1)) FTIR spectra of natural and (35)Cl monoisotopic CH(3)CF(2)Cl have been recorded at -70 degrees C in the 600-1400 cm(-1) range. The bands nu(7), nu(8), and nu(15) have been rotationally analyzed for both isotopic varieties. With the help of predictions based on nu(8) parameters, the millimeter-wave spectrum of the (35)Cl species in the v(8) = 1 state has been observed and jointly fitted with the IR data. Only a small number of local perturbations have been detected in the spectra. Altogether more than 8000 IR transitions have been fitted with an experimental precision of ca. 3 x 10(-4) cm(-1). Copyright 2000 Academic Press.  相似文献   

6.
Spectra of (10)B monoisotopic diborane, B(2)H(6), have been recorded at high resolution (2-3 x 10(-3) cm(-1)) by means of Fourier transform spectroscopy in the region 700-1300 cm(-1). A thorough analysis of the nu(18) a-type, nu(14) c-type, and nu(5) symmetry-forbidden band has been performed. Of particular interest are the results concerning the nu(5) symmetry-forbidden band, which is observed only because it borrows intensity through an a-type Coriolis interaction with the very strong nu(18) infrared band located approximately 350 cm(-1) higher in wavenumber. The nu(5) band has been observed around 833 cm(-1) and consists of a well-resolved Q branch accompanied by weaker P- and R-branch lines. Very anomalous line intensities are seen, with the low K(a) transitions being vanishingly weak, and Raman-like selection rules observed. The determination of the upper state Hamiltonian constants proved to be difficult since the corresponding energy levels of each of the bands are strongly perturbed by nearby dark states. To account for these strong localized resonances, it was necessary to introduce the relevant interacting terms in the Hamiltonian. As a result the upper state energy levels were calculated satisfactorily, and precise vibrational energies and rotational and coupling constants were determined. In particular the following band centers were derived: nu(0) (nu(5)) = 832.8496(70) cm(-1), nu(0) (nu(14)) = 977.57843(70) cm(-1), and nu(0) (nu(18)) = 1178.6346(40) cm(-1). (Type A standard uncertainties (1varsigma) are given in parentheses.) Copyright 2000 Academic Press.  相似文献   

7.
The nu(2) (nu(eff.) 854.841 cm(-1)) and 2nu(3) infrared bands (nu(eff.) 840.083 cm(-1)) of DSiF(3) have been studied with a resolution of 2.5 x 10(-3) cm(-1). Moreover, millimeter-wave transitions in the v(2) = 1 and v(3) = 2 states up to J" = 33 have been measured. The assignments and fit of the poorly resolved, compressed cluster-type 2nu(3) IR transitions have been confirmed by a simultaneous study of the 2nu(3)-nu(3) band. The constant W = 5.116 cm(-1) of the Fermi interaction between the v(2) = 1 and v(3) = 2 levels has been determined from frequency effects which are in agreement with relative intensities of the nu(2) and 2nu(3) bands. The deperturbed (B(0) - B(v)) and (C(0) - C(v)) values of the states involved agree with their ab initio predictions within 7% in the worst case. Copyright 2001 Academic Press.  相似文献   

8.
Using 0.002 cm(-1) resolution Fourier transform absorption spectra of an (17)O-enriched ozone sample, an extensive analysis of the nu(3) band together with a partial identification of the nu(1) band of the (17)O(16)O(17)O isotopomer of ozone has been performed for the first time. As for other C(2v)-type ozone isotopomers [J.-M. Flaud and R. Bacis, Spectrochim. Acta, Part A 54, 3-16 (1998)], the (001) rotational levels are involved in a Coriolis-type resonance with the levels of the (100) vibrational state. The experimental rotational levels of the (001) and (100) vibrational states have been satisfactorily reproduced using a Hamiltonian matrix which takes into account the observed rovibrational resonances. In this way precise vibrational energies and rotational and coupling constants were deduced and the following band centers nu(0)(nu(3)) = 1030.0946 cm(-1) and nu(0)(nu(1)) = 1086.7490 cm(-1) were obtained for the nu(3) and nu(1) bands, respectively. Copyright 2000 Academic Press.  相似文献   

9.
The infrared spectrum in the range 900-1230 cm(-1) including the fundamental bands nu(3) and nu(6) of CD(3)CN has been studied. The resolution attained was 0.0025 cm(-1) in the measurement on the Bruker 120 HR Fourier spectrometer in Oulu. About 4000 lines were assigned in the nu(6) band. For the weak nu(3) band, which has not been observed earlier directly, we were able to assign 206 lines in three subbands K=8-10. These lines become detectable due to the strong nu(3)/nu(6) Coriolis resonance. There is also an l(1,-2) resonance between nu(3) and nu(6), which made it possible to obtain a value 2.647721(50) cm(-1) for the axial rotational constant A(0), when D(0)(K) from force field calculations was applied. Different types of resonances with the overtone 3nu(8) and the combinations nu(4)+nu(8) and nu(7)+nu(8) were observed. A fit with a standard deviation of 0.0019 cm(-1) was attained by using a model of 10 different resonances. Copyright 2001 Academic Press.  相似文献   

10.
New high-resolution Fourier transform absorption spectra of an (15)N(16)O(2) isotopic sample of nitrogen dioxide were recorded at the University of Bremen in the 6.3-μm region. Starting from the results of a previous study [Y. Hamada, J. Mol. Struct. 242, 367-377 (1991)], a new and more extended analysis of the nu(3) band located at 1582.1039 cm(-1) has been performed. The spin-rotation energy levels were satisfactorily reproduced using a theoretical model which takes into account both the Coriolis interactions between the spin-rotation energy levels of the (001) vibrational state with those of the (020) and (100) states and the spin-rotation resonances within each of the NO(2) vibrational states. Precise vibrational energies and rotational, spin-rotation, and coupling constants were obtained in this way for the first triad of (15)N(16)O(2) interacting states {(020), (100), (001)}. Finally, a comprehensive list of line positions and line intensities of the {nu(1), 2nu(2), nu(3)} interacting bands of (15)N(16)O(2) was generated, using for the line intensities the transition moment operators which were obtained previously for the main isotopic species. Copyright 2000 Academic Press.  相似文献   

11.
A spectrum of HSiF(3) has been recorded at room temperature with a gas pressure of 20-50 Torr in the near-infrared region. A laser photoacoustic spectrometer consisting of a longitudinal resonant cell coupled to a titanium:sapphire ring laser was employed. The 5nu(1) and 6nu(1) overtone bands of H(28)SiF(3) associated with the Si-H stretching have been observed at high resolution (3 x 10(-2) cm(-1)) in the regions 10 900-10 960 and 12 875-12 925 cm(-1), respectively. About 450 lines of the 5nu(1)-0 band have been assigned (J 相似文献   

12.
The spectrum of the nu(10) band of diborane, arising from the ring-puckering vibration, has been obtained with a spectral resolution of 0.0015 cm(-1) in the region 275-400 cm(-1). The spectrum of a sample enriched in (10)B was recorded as well as one with naturally abundant boron, i.e., 64% (11)B(2)H(6), 32% (10)B(11)BH(6), and 4% (10)B(2)H(6). This mode is the lowest vibrational level of the molecule and is unperturbed, allowing a complete assignment of not only the fundamental bands but also the 2nu(10)-nu(10) hot bands of all three boron isotopomers. The intensities of several hundred lines of the fundamental and hot bands of all isotopomers have been measured and vibrational transition moments have been obtained. Finally, it has been shown that the harmonic approximation does not apply for nu(10). Copyright 2000 Academic Press.  相似文献   

13.
14.
Results of a high-resolution infrared study of the spectroscopy of monodeuterated methyl fluoride, CH(2)DF, are reported for the first time. Spectra ranging from 500 to 3300 cm(-1) have been obtained and cover all the fundamental bands at resolutions down to 0.005 cm(-1). The two lowest energy fundamentals, the nu(5) and nu(6) bands, have been analyzed in detail. Since the molecule has C(s) symmetry, in principle both these bands are AB hybrids, since they belong to the irreducible representation A'. However, it was found that both are almost pure A-type bands. A total of 597 A-type lines of the nu(5) band and 619 A-type lines of the nu(6) band have been assigned. Vibrational and rotational spectroscopic constants have been determined by least-squares fitting to the data. An improved band center for nu(7) is also reported. Copyright 2001 Academic Press.  相似文献   

15.
Three of the four components of the 3nu(1)+3nu(3) tetrad of (12)C(16)O(2) and (13)C(16)O(2), labeled 30031, 30032, and 30033 in HITRAN notation, have been observed by intracavity laser absorption spectroscopy in the 10 450- to 11 000-cm(-1) region. The rotational analysis has yielded the rovibrational parameters of the vibrational states. The experimental values are found to be in very good agreement with the rovibrational energies recently predicted from variational calculations and reduced effective Hamiltonians. The absolute band intensity of these extremely weak transitions have been measured. The study of the relative intensities within the 3nu(1)+3nu(3) tetrad suggests that part of the oscillator strength is carried by the (22(0)3) state. Copyright 2001 Academic Press.  相似文献   

16.
The self-broadening coefficients and the intensities of 29 lines in the nu(1) band of cyanogen chloride ((35)Cl(12)C(14)N) have been measured at high resolution in the range 699-736 cm(-1), using a tunable diode-laser spectrometer. The collisional widths and most of the intensities are obtained by fitting Voigt and Rautian profiles to the measured shapes of the lines. From the analysis of the line intensities we determine the absolute strength as well as the Herman-Wallis factors for the nu(1) band. A semiclassical calculation of the self-broadening coefficients, performed by considering the main electrostatic interactions only, has provided larger results than the experimental data. Copyright 2001 Academic Press.  相似文献   

17.
The gas-phase IR spectrum of the nu(2) (A(1), 1610.33 cm(-1)) band of the deuterated isotopomer of diazirine, D(2)CN(2), a three-membered ring compound which belongs to the molecular symmetry point group C(2v), has been studied at a resolution of about 0.005 cm(-1). This vibrational mode which can be approximately described as N&dbond;N stretching is widely perturbed. This is due to various interactions with the tetrad consisting of the binary combinations nu(6) + nu(7) (A(1)), nu(7) + nu(9) (A(2)), nu(5) + nu(6) (B(2)), and nu(5) + nu(9) (B(1)), which form a relatively isolated pentad together with nu(2) in the wavenumber region 1560-1610 cm(-1). A simultaneous upper state analysis of nu(2) from a pentad model including these resonances has been performed and a set of spectroscopic parameters has been obtained. Since the four combination bands of the pentad are dark states, only band centers could be determined; in addition for nu(5) + nu(9) and nu(7) + nu(9) also the term (B - C)/2 has been obtained. A number of Coriolis interaction constants and the vibrational resonance (with nu(6) + nu(7)) parameter have been calculated as well. Copyright 2001 Academic Press.  相似文献   

18.
A high-resolution analysis of the {nu(2), nu(3)} and {nu(4), nu(6)} bands of the two isotopomers of chloryl fluoride F(35)ClO(2) and F(37)ClO(2) has been carried out for the first time using simultaneously infrared spectra recorded around 16&mgr;m and 26&mgr;m with a resolution of ca. 0.003 cm(-1) and microwave and submillimeter-wave transitions occurring within the vibrational states 2(1), 3(1), 4(1), and 6(1). Taking into account the Coriolis resonances which link the rotational levels of the {2(1), 3(1)} and the {4(1), 6(1)} interacting states, it was possible to reproduce very satisfactorily the observed transitions and to determine accurate vibrational energies and rotational constants for the upper states 2(1), 3(1), 4(1), and 6(1) of both the (35)Cl and (37)Cl isotopic species. Copyright 2001 Academic Press.  相似文献   

19.
The first high-resolution study on germanium tetrafluoride is reported. We used a monoisotopic sample of (70)GeF(4). The FTIR spectra of the two infrared active fundamentals, namely the nu(4) (bending) and nu(3) (stretching) modes, were recorded at a temperature of ca. 210 K and a resolution (1/maximum optical path difference) of 0.0031 and 0.0023 cm(-1), respectively. These spectra were analyzed using the STDS software developed in Dijon. In both cases, we obtained a fit with a root mean square better than 1x10(-3) cm(-1). Both bands show very regular structures with no detectable perturbation. Copyright 2001 Academic Press.  相似文献   

20.
We report laboratory intensity measurements for the weak nu9 (998.8 cm-1) and intense nu10 (841.1 cm-1) bands of allene. Allene is predicted to be a constituent of Titan's atmosphere, and measurements of its abundance would yield important information about the atmospheric chemistry of that body. Spectra were obtained at a temperature of 200 K (approximating Titan conditions) using the high-resolution FTS instrument at Kitt-Peak National Observatory's McMath-Pierce observatory. A total of 505 nu9 and 687 nu10 line intensities were fit using a least-squares method to accurately determine two sets of transition dipole moments. Integrated band intensities computed utilizing the fitted parameters were found to be 36 +/- 4% cm-2 atm-1 and 301 +/- 4% cm-2 atm-1 for nu9 and nu10, respectively, at 200 K. Copyright 1999 Academic Press.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号