首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A variety of continuous-time differential functions have been developed to investigate dynamic advertising problems in business and economics fields. Since major dynamic models appearing before 1995 have been reviewed by a few survey papers, we provide a comprehensive review of the dynamic advertising models published after 1995, which are classified into six categories: (i) Nerlove–Arrow model and its extensions, (ii) Vidale–Wolfe model and its extensions, (iii) Lanchester model and its extensions, (iv) the diffusion models, (v) dynamic advertising-competition models with other attributes, and (vi) empirical studies for dynamic advertising problems. For each category, we first briefly summarize major relevant before-1995 models, and then discuss major after-1995 models in details. We find that the dynamic models reviewed in this paper have been extensively used to analyze various advertising problems in the monopoly, duopoly, oligopoly, and supply chain systems. Our review reveals that the diffusion models have not been used to analyze advertising problems in supply chain operations, which may be a research direction in the future. Moreover, we learn from our review that very few publications regarding dynamic advertising problems have considered the supply chain competition. We also find that very few researchers have used the diffusion model to investigate the dynamic advertising problems with product quality as a decision variable; and, the pricing decision has not been incorporated into any extant Lanchester model. The paper ends with a summary of our review and suggestions on possible research directions in the future.  相似文献   

2.
Goal Programming (GP) is an important analytical approach devised to solve many realworld problems. The first GP model is known as Weighted Goal Programming (WGP). However, Multi-Choice Aspirations Level (MCAL) problems cannot be solved by current GP techniques. In this paper, we propose a Multi-Choice Mixed Integer Goal Programming model (MCMI-GP) for the aggregate production planning of a Brazilian sugar and ethanol milling company. The MC-MIGP model was based on traditional selection and process methods for the design of lots, representing the production system of sugar, alcohol, molasses and derivatives. The research covers decisions on the agricultural and cutting stages, sugarcane loading and transportation by suppliers and, especially, energy cogeneration decisions; that is, the choice of production process, including storage stages and distribution. The MCMIGP allows decision-makers to set multiple aspiration levels for their problems in which “the more/higher, the better” and “the less/lower, the better” in the aspiration levels are addressed. An application of the proposed model for real problems in a Brazilian sugar and ethanol mill was conducted; producing interesting results that are herein reported and commented upon. Also, it was made a comparison between MCMI GP and WGP models using these real cases.  相似文献   

3.
We consider a p-norm linear discrimination model that generalizes the model of Bennett and Mangasarian (1992) and reduces to a linear programming problem with p-order cone constraints. The proposed approach for handling linear programming problems with p-order cone constraints is based on reformulation of p-order cone optimization problems as second order cone programming (SOCP) problems when p is rational. Since such reformulations typically lead to SOCP problems with large numbers of second order cones, an “economical” representation that minimizes the number of second order cones is proposed. A case study illustrating the developed model on several popular data sets is conducted.  相似文献   

4.
Multi-component multi-phase (MCMP) flows are very common in engineering or industrial problems, as well as in nature. Because the lattice Boltzmann equation (LBE) model is based on microscopic models and mesoscopic kinetic equations, it offers many advantages for the study of multi-component or multi-phase flow problems. While the original formulation of Shan and Chen’s (SC) model can incorporate some MCMP flow scenarios, the density ratio of the different components is greatly restricted to less than approximately 2.0. This obviously limits the applications of this MCMP LBE model. Hence, based on the original SC MCMP model and the improvements in the single-component multi-phase (SCMP) flow model reported by Yuan and Schaefer, we have developed a new model that can simulate a MCMP system with a high density ratio.  相似文献   

5.
We study optimal stochastic control problems with jumps under model uncertainty. We rewrite such problems as stochastic differential games of forward–backward stochastic differential equations. We prove general stochastic maximum principles for such games, both in the zero-sum case (finding conditions for saddle points) and for the nonzero sum games (finding conditions for Nash equilibria). We then apply these results to study robust optimal portfolio-consumption problems with penalty. We establish a connection between market viability under model uncertainty and equivalent martingale measures. In the case with entropic penalty, we prove a general reduction theorem, stating that a optimal portfolio-consumption problem under model uncertainty can be reduced to a classical portfolio-consumption problem under model certainty, with a change in the utility function, and we relate this to risk sensitive control. In particular, this result shows that model uncertainty increases the Arrow–Pratt risk aversion index.  相似文献   

6.
Luka Grubišić 《PAMM》2007,7(1):2050001-2050002
We are concerned with singularly perturbed spectral problems which appear in engineering sciences. Typically under the influence of a singular perturbation the model can be approximated by a simpler, perturbation independent model. Such reduced model is usually better amenable to analytic or numeric analysis. However, the question of the quality of approximation has to be answered. Frequently, correctors which yield an improved solution–capturing important phenomena which the reduced model does not “see”–to the original problems are required. We tackle both question for self-adjoint eigenvalue/eigenvector problems posed in a general Hilbert space. Our technique is constructive and is based on methods (relative perturbation theory) of modern Numerical Linear Algebra. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
This paper introduces two-dimensional (weight and volume) overbooking problems arising mainly in the cargo revenue management, and compares them with one-dimensional problems. It considers capacity spoilage and cargo offloading costs, and minimizes their sum. For one-dimensional problems, it shows that the optimal overbooking limit does not change with the magnitude of the booking requests. In two-dimensional problems, the overbooking limit is replaced by a curve. The curve, along with the volume and weight axes, encircles the acceptance region. The booking requests are accepted if they fall within this region. We present Curve (Cab) and Rectangle (Rab) models. The boundary of the acceptance region in the Cab (resp. Rab) model is a curve (resp. rectangle). The optimal curve for the Cab model is shown to be unique and continuous. Moreover, it can be obtained by solving a series of simple equations. Finding the optimal rectangle for the Rab model is more challenging, so we propose an approximate rectangle. The approximate rectangle is a limiting solution in the sense that it converges to the optimal rectangle as the booking requests increase. The approximate rectangle is numerically shown to yield costs that are very close to the optimal costs.  相似文献   

8.
“Managed” lanes of highways usually refer to lanes that are not open to all types of vehicles, such as “High Occupancy Vehicles” (HOV) lanes and “High Occupancy Toll” (HOT) lanes, etc. The HOV lanes of highways are reserved only for vehicles with a driver and one or more passengers. Whereas, HOT lanes allow all vehicles but require tolls from the vehicles with no passenger except the driver. In this paper, we present a discrete-time traffic assignment system optimum model to predict the optimal traffic flows on managed lanes at various times in the entire planning horizon. This model minimizes the overall delay (travel time) and belongs to the class of dynamic traffic assignment (DTA) problems. When applied to general networks, DTA problems can be large and difficult to solve, but the problem is manageable when it is applied to a network with managed lanes. In particular, the DTA model in this paper for managed lanes is reduced to a mixed integer program for which several efficient heuristic algorithms exist. This paper also discusses the special properties of the discrete-time DTA model, based upon which a heuristic algorithm is proposed. Numerical results show that this algorithm is efficient for many cases of the managed lane problems.  相似文献   

9.
10.
PDE-constrained parameter optimization problems suffer from the high dimensionality of the corresponding discretizations, which results in long optimization runtimes. One possible approach to solve such large scale optimization problems more rapidly is to replace the PDE constraint by a low-dimensional model constraint obtained via model reduction. We present a general technique for certification of such surrogate optimization results by a-posteriori error estimation based on Reduced Basis (RB) models. We allow arbitrary PDEs and optimization functionals, in particular cover nonlinear optimization problems. Experiments on a stationary heat-conduction problem demonstrate the applicability of the error bound. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
In a previous paper, Gouveia and Magnanti (2003) found diameter-constrained minimal spanning and Steiner tree problems to be more difficult to solve when the tree diameter D is odd. In this paper, we provide an alternate modeling approach that views problems with odd diameters as the superposition of two problems with even diameters. We show how to tighten the resulting formulation to develop a model with a stronger linear programming relaxation. The linear programming gaps for the tightened model are very small, typically less than 0.5–, and are usually one third to one tenth of the gaps of the best previous model described in Gouveia and Magnanti (2003). Moreover, the new model permits us to solve large Euclidean problem instances that are not solvable by prior approaches. Research funded in part by the Research Projects POCTI-ISFL-1-152,POSI/CPS/41459/2001 and POCTI/MAT/139/94 Research funded in part by the Singapore-MITAlliance(SMA)  相似文献   

12.
In this paper, a new complex-valued recurrent neural network (CVRNN) called complex-valued Zhang neural network (CVZNN) is proposed and simulated to solve the complex-valued time-varying matrix-inversion problems. Such a CVZNN model is designed based on a matrix-valued error function in the complex domain, and utilizes the complex-valued first-order time-derivative information of the complex-valued time-varying matrix for online inversion. Superior to the conventional complex-valued gradient-based neural network (CVGNN) and its related methods, the state matrix of the resultant CVZNN model can globally exponentially converge to the theoretical inverse of the complex-valued time-varying matrix in an error-free manner. Moreover, by exploiting the design parameter γ>1, superior convergence can be achieved for the CVZNN model to solve such complex-valued time-varying matrix inversion problems, as compared with the situation without design parameter γ involved (i.e., the situation with γ=1). Computer-simulation results substantiate the theoretical analysis and further demonstrate the efficacy of such a CVZNN model for online complex-valued time-varying matrix inversion.  相似文献   

13.
Flexible manufacturing systems (FMS) require intelligent scheduling strategies to achieve their principal benefit — combining high flexibility with high productivity. A mixed-integer linear programming model (MILP) is presented here for FMS scheduling. The model takes a global view of the problem and specifically takes into account constraints on storage and transportation. Both of these constrained resources are critical for practical FMS scheduling problems and are difficult to model. The MILP model is explained and justified and its complexity is discussed. Two heuristic procedures are developed, based on an analysis of the global MILP model. Computational results are presented comparing the performance of the different solution strategies. The development of iterative global heuristics based on mathematical programming formulations is advocated for a wide class of FMS scheduling problems.  相似文献   

14.
This paper presents a binary optimization framework for modeling dynamic resource allocation problems. The framework (a) allows modeling flexibility by incorporating different objective functions, alternative sets of resources and fairness controls; (b) is widely applicable in a variety of problems in transportation, services and engineering; and (c) is tractable, i.e., provides near optimal solutions fast for large-scale instances. To justify these assertions, we model and report encouraging computational results on three widely studied problems – the Air Traffic Flow Management, the Aircraft Maintenance Problems and Job Shop Scheduling. Finally, we provide several polyhedral results that offer insights on its effectiveness.  相似文献   

15.
Tabu search for a class of scheduling problems   总被引:1,自引:0,他引:1  
Scheduling problems are often modeled as resourceconstrained problems in which critical resource assignments to tasks are known and the best assignment of resource time must be made subject to these constraints. Generalization toresource scheduling, where resource assignments are chosen concurrently with times results is a problem which is much more difficult. A simplified model of the general resource scheduling model is possible, however, in which tasks must be assigned a singleprimary resource, subject to constraints resulting from preassignment ofsecondary, or auxiliary, resources. This paper describes extensions and enhancements of tabu search for the special case of the resource scheduling problem described above. The class of problems is further restricted to those where it is reasonable to enumerate both feasible time and primary resource assignments. Potential applications include shift oriented production and manpower scheduling problems as well as course scheduling where classrooms (instructors) are primary and instructors (rooms) and students are secondary resources. The underlying model is a type of quadratic multiple choice problem which we call multiple choice quadratic vertex packing (MCQVP). Results for strategic oscillation and biased candidate sampling strategies are shown for reasonably sized real and randomly generated, synthetic, problem instances. The strategies are compared with other variations using consistent measures of solution time and quality developed for this study.  相似文献   

16.
In this paper, we deal with ranking problems arising from various data mining applications where the major task is to train a rank-prediction model to assign every instance a rank. We first discuss the merits and potential disadvantages of two existing popular approaches for ranking problems: the ‘Max-Wins’ voting process based on multi-class support vector machines (SVMs) and the model based on multi-criteria decision making. We then propose a confidence voting process for ranking problems based on SVMs, which can be viewed as a combination of the SVM approach and the multi-criteria decision making model. Promising numerical experiments based on the new model are reported. The research of the last author was supported by the grant #R.PG 0048923 of NESERC, the MITACS project “New Interior Point Methods and Software for Convex Conic-Linear Optimization and Their Application to Solve VLSI Circuit Layout Problems” and the Canada Researcher Chair Program.  相似文献   

17.
This paper considers single machine scheduling with past-sequence-dependent (psd) delivery times, in which the processing time of a job depends on its position in a sequence. We provide a unified model for solving single machine scheduling problems with psd delivery times. We first show how this unified model can be useful in solving scheduling problems with due date assignment considerations. We analyze the problem with four different due date assignment methods, the objective function includes costs for earliness, tardiness and due date assignment. We then consider scheduling problems which do not involve due date assignment decisions. The objective function is to minimize makespan, total completion time and total absolute variation in completion times. We show that each of the problems can be reduced to a special case of our unified model and solved in O(n 3) time. In addition, we also show that each of the problems can be solved in O(nlogn) time for the spacial case with job-independent positional function.  相似文献   

18.
We present and analyze a new fictitious domain model for the Brinkman or Stokes/Brinkman problems in order to handle general jump embedded boundary conditions (J.E.B.C.) on an immersed interface. Our model is based on algebraic transmission conditions combining the stress and velocity jumps on the interface Σ separating two subdomains: they are well chosen to get the coercivity of the operator. It is issued from a generalization to vector elliptic problems of a previous model stated for scalar problems with jump boundary conditions (Angot (2003, 2005) [2], [3]). The proposed model is first proved to be well-posed in the whole fictitious domain and some sub-models are identified. A family of fictitious domain methods can be then derived within the same unified formulation which provides various interface or boundary conditions, e.g. a given stress of Neumann or Fourier type or a velocity Dirichlet condition. In particular, we prove the consistency of the given-traction E.B.C. method including the so-called do nothing outflow boundary condition.  相似文献   

19.
Optimal investment and reinsurance of an insurer with model uncertainty   总被引:1,自引:0,他引:1  
We introduce a novel approach to optimal investment–reinsurance problems of an insurance company facing model uncertainty via a game theoretic approach. The insurance company invests in a capital market index whose dynamics follow a geometric Brownian motion. The risk process of the company is governed by either a compound Poisson process or its diffusion approximation. The company can also transfer a certain proportion of the insurance risk to a reinsurance company by purchasing reinsurance. The optimal investment–reinsurance problems with model uncertainty are formulated as two-player, zero-sum, stochastic differential games between the insurance company and the market. We provide verification theorems for the Hamilton–Jacobi–Bellman–Isaacs (HJBI) solutions to the optimal investment–reinsurance problems and derive closed-form solutions to the problems.  相似文献   

20.
We examine a prominent and widely-studied model of the protein folding problem, the two-dimensional (2D) HP model, by means of a filter-and-fan (F&F) solution approach. Our method is designed to generate compound moves that explore the solution space in a dynamic and adaptive fashion. Computational results for standard sets of benchmark problems show that the F&F algorithm is highly competitive with the current leading algorithms, requiring only a single solution trial to obtain best known solutions to all problems tested, in contrast to a hundred or more trials required in the typical case to evaluate the performance of the best of the alternative methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号