首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of closo-[B10H10]2− with [PtCl2(PPh3)2] in MeOH at reflux affords the B-methoxy substituted 11-vertex nido-platinaborane compound [(PPh3)2PtB10H10-8-H0.5(OCH3)0.5-10-(OCH3)] (1) and the known species [(PPh3)2PtB10H11-8-(OCH3)] (2) and 1,6-(PPh3)2B10H8 (3). The same reaction under solvothermal condition gives the partially degraded diplatinaborane [(PPh3)2(μ-PPh2)Pt2B9H7-3,9,11-(OMe)3] (4) with a novel nido-Pt2B9H10 skeleton. The new metallaborane compounds have been characterized by spectroscopic methods and single-crystal X-ray analyses. In particular, computational/theoretical chemistry supports the ultimate structural confirmation of 4. The structures of these metallaboranes exhibit interesting intra- and/or intermolecular C-H?O hydrogen bonding interactions.  相似文献   

2.
Reaction of [W(PMe2Ph)3H6] with pentaborane(9) gives nido-2-[W(PMe2Ph)3H2B4H8] (1) as well as nido-2-[W(PMe2Ph)3HB5H10] (2). The crystal structure of (2) has been determined. Compound (2) has a novel metallaborane structure containing an edge-bridging {BH3} group between the tungsten atom and one of the basal boron atoms in a “nido-WB4” pyramid. Reaction of [W(PMe3)42-CH2PMe2)H] with pentaborane(9) gives nido-2-[W(PMe3)3H2B4H8] (3) whilst reaction of [Mo(L)4H4] with pentaborane(9) gives nido-2-[Mo(L)3H2B4H8] [L = PMe3 (4), PMe2Ph (5)]. Treatment of [Mo(PMe3)4H4] with excess BH3 · thf gives the known borohydride [Mo(PMe3)4H(η2-BH4)].  相似文献   

3.
Reaction of [Ru(PPh3)4H2] with BH3 · thf at room temperature gives borane oligomerisation with the formation of the 6-vertex metallaborane nido-2-[Ru(PPh3)2(H)B5H10] (1). This cluster is also formed by reaction of [Ru(PPh3)4H2] with nido-B5H9. Compound (1) is readily deprotonated by KH in thf at the unique basal B-H-B bridge to give (2). In contrast to [Ru(PPh3)4H2] reaction of [cis-Ru(PMe3)4H2] with BH3 · thf gives initially the known borohydride [Ru(PMe3)3(H)(η2-BH4)] which reacts with excess BH3 · thf to give the 5-vertex metallaborane nido-2-[Ru(PMe3)3B4H8] (3). Reaction of [cis-Ru(PMe3)4H2] with nido-B5H9 also gives (3) and nido-2-[Ru(PMe3)3B9H13] (4). [cis-Ru(PMe3)4H2] is conveniently prepared in high yield in a one-pot synthesis by the sodium amalgam reduction of RuCl3 · 3H2O in thf with excess PMe3 under dinitrogen.  相似文献   

4.
Three Pd(II) complexes [Pd2(μ-Cl)2{7,8-(PPh2)2-7,8-C2B9H10}2] · 0.25CH2Cl2 (1), [Pd{7,8-(PPh2)2-7,8-C2B9H10}2] · 4CHCl3 (2) and [PdCl2(1,2-(PPh2)2-1,2-C2B10H10)] (3) have been synthesized by the reactions of 1,2-(PPh2)2-1,2-C2B10H10 with PdCl2 in acetonitrile, cyanophenyl and dichloromethane, respectively. A fourth complex, [PdI2(1,2-(PPh2)2-1,2-C2B10H10)] (4), was obtained by a ligand exchange reaction through the substitution of the Cl of complex 3 with I. All four complexes have been characterized by elemental analysis, FT-IR, 1H and 13C NMR spectroscopy and X-ray structure determination. Single crystal X-ray determination showed that the carborane cage, nido for 1, 2 and closo for 3, 4, was coordinated bidentately to the Pd atom through the two P atoms, and the geometry at the Pd atom was square-planar in all the complexes.  相似文献   

5.
[(η5-C5R5)Fe(PMe3)2H] (R = H, Me) can be made in good yields in a simple one-pot reaction between FeCl2, PMe3, C5R5H (R = H, Me) and Na/Hg in thf. Reaction of [(η5-C5H5)Fe(PMe3)2H] with pentaborane(9) gives the known metallaborane [(η5-C5H5)-nido-2-FeB5H10] (1) in improved yield as well as the new metallaboranes [(η-C5H5)-nido-2-FeB5H8{μ-5,6-Fe(η5-C5H5)(PMe3)(μ-6,7-H)}] (2), [(η-C5H5)(PMe3)-arachno-2-FeB3H8] (3), [(η5-C5H5)2-capped-nido-2,3-Fe2B4H8] (4), [(η5-C5H5)-nido-2-FeB4H7(PMe3)] (5) and [(η5-C5H5)-nido-2-FeB5H8(PMe3)] (6). Reaction of [(η5-C5Me5)Fe(PMe3)2H] with pentaborane(9) gives predominantly [(η5-C5Me5)-nido-2-FeB5H10] (7) and [(η5-C5Me5)(PMe3)-arachno-2-FeB3H8] (8). Reaction of [(η5-C5H5)Fe(PMe3)2H] with 2 equiv. of BH3 · thf gives low yields of ferrocene and compound 3. Compound 7 thermally isomerises to the apical isomer [(η5-C5H5)-nido-2-FeB5H10] (9) in low yield. Compounds 1 and 7 deprotonate cleanly in the presence of KH at the unique B-H-B bridge to give [(η5-C5H5)-nido-2-FeB5H9][K+] (10) and [(η5-C5Me5)-nido-2-FeB5H9][K+] (11) respectively, whilst 6 deprotonates more slowly at one of two equivalent B-H-B bridges to give the fluxional anion [(η5-C5H5)-nido-2-FeB5H7(PMe3)] (12).  相似文献   

6.
Reaction of the ten-vertex [6-Ph-nido-6-CB9H11] anion (1) with two-electron donor ligands L, where L is SMe2, NH2Ph, NC5H5, NC5H4-para-CH2Ph, NC5H4-para-Ph or NC9H7 (where NC9H7 is quinoline) in the presence of {FeCl3(OH2)6} gives the six neutral arachno ten-vertex monocarbaboranes [6-Ph-9-L-arachno-6-CB9H12], compounds 2, 3, 4, 7, 9 and 11, respectively, isolatable in yields of up to 63%. On prolonged treatment with {FeCl3(OH2)6} oxidative cluster closure of the four compounds 4, 7, 9 and 11 that have pyridine-type ligands gives the neutral closo ten-vertex monocarbaboranes [1-Ph-6-L-closo-1-CB9H8], compounds 6, 8, 10 and 12, respectively, in yields of 49-92%. All new species 2, 3, 4, 6, 7, 8, 9, 10, 11 and 12 are characterised by single-crystal X-ray diffraction analysis and NMR spectroscopy. [This paper is an annotated exposition of parts of an oral presentation at the Third Pan-European Meeting of Boron Chemists, EUROBORON-3, Pruhonice, The Czech Republic, September 2004, of which the proceedings constitute this volume of Journal of Organometallic Chemistry.]  相似文献   

7.
Cluster opening of [2-Cp-9-tBuNH-closo-2,1,7,9-FeC3B8H10] (1) , followed by oxidation, generates complexes [2-Cp-8-tBuNH-closo-2,1,8,10-FeC3B8H10] (2), [2-Cp-4-tBuNH-closo-2,1,4,12-FeC3B8H10] (3), [2-Cp-1-tBuNH-closo-2,1,7,10-FeC3B8H10] (4), and [1-Cp-10-tBuNH-closo-1,2,3,10-FeC3B7H9] (5). Another variation of the syntheses led to compounds [2-Cp-closo-2,1,8,10-FeC3B8H11] (6), [4-Cp-1-tBuNH-closo-4,1,6,8,-FeC3B9H11] (7) and to two isomeric, not yet fully characterized, 13-vertex compounds of general nido structure [tBuNH-Cp-FeC3B9H12] (8 and 9).  相似文献   

8.
The preparation of iodo acid [closo-1-CB9H8-1-COOH-10-I] (1) is optimized and scaled from 1 to 40 g of B10H14. The improved preparation of the [arachno-6-CB9H13-6-COOH] (5) uses four times smaller volume and can be run conveniently in up to 40 g scale in a 3-L vessel. The optimized oxidation of 5 to [closo-2-CB9H9-2-COOH] (4) requires less oxidant, 12 times smaller volume, and significantly shorter reaction time. The overall yields of the iodo acid 1 as the [NMe4]+ salt are typically 8-10% (10-12 g) for 40 g of B10H14. The iodo acid 1 was transformed to amino acid 8, then to dinitrogen acid 10, and finally to sulfonium acid 2[3] in overall yield of about 13%. The search for a more efficient phosphine ligand for the Pd-catalyzed amination process was not fruitful. Three routes to the sulfonium acid 2[n] were investigated, and the best yield of about 47% was obtained for Cs2CO3-assisted cycloalkylation. Liquid crystalline ester of acid 2[3] and 4-butoxyphenol was prepared and investigated.  相似文献   

9.
The reaction of the hypho-[6,7-C2B6H13] anion (1) with nickelocene and an excess of ‘proton sponge’ (1,8-bis-(dimethylamino-naphthalene)) in boiling acetonitrile leads to the formation of a pair of isomeric trimetallic nickel-boron clusters, [6,7,8-(CpNi)3-1-CB5H6] (2) and [6,7,8-(CpNi)3-2-CB5H6] (3), in a combined yield of 55%. Isomer (2) had been previously prepared from nido-2-CB5H9 but in much lower yield. Isomer (3) is without precedent and has been characterized using multi-nuclear NMR spectroscopy and mass spectrometry. Isomer (3) undergoes conversion to (2) via heating in boiling toluene. In addition to this isomeric pair, an interesting nido dimetallacarborane of constitution [6,6′-(CpNi)2-7,7′-C2B6H8] (4) has been isolated from the same reaction in 5% yield and characterized by single-crystal X-ray diffraction analysis.  相似文献   

10.
Addition of ethynylferrocene to nido-1,2-(CpRuH)2B3H7 (1) at ambient temperature leads to nido-1,2-(CpRu)2(1,5-μ-C{Fc}Me)B3H7 (2, 3) and closo-4-Fc-1,2-(CpRuH)2-4,6-C2B2H3 (4). Compounds 2 and 3 represent a pair of geometric isomers, nido-species in which the regiochemistry of the alkyne reduction conforms to the Markovnikoff rule. Compound 4 is an octahedral structure in which the inserted alkyne is on an open face of the closo cluster.  相似文献   

11.
AgOTf (OTf = trifluoromethanesulfonate) shows the reactivity differences when it reacts with carborane complexes [MCl2{(PPh2)2(C2B10H10)}] (M = Ni (2), Pd (3)). The reaction of AgOTf with the palladium complex 3 affords [Pd2(μ-OTf)2{(PPh2)2(C2B9H10)}2] (4) in high yields, while corresponding reaction between the nickel complex 2 and AgOTf leads to the formation of binuclear complexes [Ni{(PPh2)2(C2B9H10)}](μ-Cl)2[Ag{(PPh2)2(C2B10H10)}] (5) and [Ag2(μ-Cl)2 {(PPh2)2 (C2B10H10)}2] (6). The carborane cage of complexes 4 and 5 were broken to form nido-carboranes. It is believed the group 10 metals themselves play an important role in opening the closo-carborane skeleton. Directly stirring [(PPh2)2(C2B10H10)] with AgOTf afforded [Ag2(μ-OTf)2{(PPh2)2(C2B10H10)}2] (7), which is also used to react with 2 and 3. The reaction between 2 and 7 gives only 4 in high yields, however, stirring the mixture of 3 and 7 affords [Pd2(μ-Cl)2{(PPh2)2(C2B9H10)}2] (8), [Pd{(PPh2)2(C2B9H10)}2] (9) and 6. All these complexes have been characterized by IR, 1H NMR, 11B NMR and elemental analyses. Complexes 2, 4-9 have also been determined by single-crystal X-ray diffraction analyses.  相似文献   

12.
Reactions between [Fe(η-C5H5)(MeCO)(CO)(L)], L = PPh3 (1), PMe3 (2), PPhMe2 (3), PCy3 (4), CO (5), and B(C6F5)3 give new complexes [Fe(η-C5H5){MeCOB(C6F5)3}(CO)(L)] L = PPh3 (7), PMe3 (8), PPhMe2 (9), PCy3 (10), CO (11), where B(C6F5)3 coordinates selectively to the O-acyl groups. Hydrolysis of 7 gives [Fe(η-C5H5){HOB(C6F5)3}(CO)(PPh3)] (6). The X-ray structures of 6, 8 and 11 have been determined. Calculations, using density functional theory, demonstrate that the charge transfer to the acyl group on Lewis acid coordination is more significant in the σ than the π system. Both effects lead to a lengthening of the acyl C-O bond thus π populations cannot be inferred from the distance changes.  相似文献   

13.
The reaction of a molar excess of closo-[B12H11I][N(n-C4H9)4]2 (1) with tetrakis(triphenylphosphine)palladium (0), Pd(0)L4, yields to the formation of the title monoanionic compound, closo-[1-B12H11P(C6H5)3][N(n-C4H9)4] (2). The structure of 2 was determined by X-ray diffraction analysis performed on a single crystal. The mechanism of formation of 2 is also discussed. We suggested a two-step mechanism for the formation of 2 consisting in a oxidative addition of the palladium complex followed by a reductive elimination involving P(C6H5)3 and assisted by Na2CO3. To our knowledge, this is the first example of monosubstitution of B12 with formation of boron-phosphorus bond.  相似文献   

14.
The reaction of Li[closo-1-Me-1,2-C2B10H10] with cyclohexene oxide produced closo-1-Me-2-(2′-hydroxycyclohexyl)-1,2-C2B10H10 (1) in 86% yield. Decapitation of (1) with potassium hydroxide in refluxing ethanol gave the corresponding cage-opened potassium salt of the carborane anion, [nido-1-Me-2-(2′-hydroxycyclohexyl)-1,2-C2B9H10] (2) in 82% yield. Deprotonation of (2) with two equivalents of n-butyllithium in THF at −78 °C, followed by its further reaction with anhydrous MCl4 · 2THF (M = Ti, Zr) produced the corresponding d0-half-sandwich metallacarboranes, closo-1-M(Cl)-2-Me-3-(2′-σ-O-cyclohexyl)-η5-2,3-C2B9H9 (3 M = Zr; 4 M = Ti), in 59% and 51% yields, respectively. Reaction of Li[closo-1,2-C2B10H11] with Merrifield’s peptide resin (1%) in refluxing THF gave the ortho-carborane-functionalized polymer (5) in 88% yield. The corresponding closo-1-polystyryl-2-(2′-hydroxycyclohexyl)-1,2-C2B10H10 (6) was produced in 94% yield by refluxing a mixture of the lithium salt of (5) and cyclohexene oxide in THF for 2 days. Compound (6) was decapitated, deprotonated and then reacted with ZrCl4 · 2THF to produce a polymer-supported d0-half-sandwich metallacarborane closo-1-Zr(Cl)-2-polystyryl-3-(2′-σ-O-cyclohexyl)-η5-2,3-C2B9H9 (7) in 41% yield. Compounds (3) and (7), in the presence of MMAO-7 (13% ISOPAR-E), were found to catalyze the polymerization of ethylene and vinyl chloride in toluene to give high molecular weight PE (9.4 × 103 (Mw/Mn = 1.8)) and PVC (2.1 × 103 (Mw/Mn = 1.6)), respectively.  相似文献   

15.
Halogenation of 9-dimethylsulfonium-7,8-dicarba-nido-undecaborane [9-SMe2-7,8-C2B9H11] with N-chlorosuccinimide, bromine and iodine gave the expected corresponding halogen derivatives [9-SMe2-11-X-7,8-C2B9H10], where X = Cl (1), Br (2), I (3). In the bromination reaction, [9-SMe2-6-Br-7,8-C2B9H10] (4) was isolated as a minor product being the first example of substitution at a “lower” belt of the 7,8-dicarba-nido-undecaborate cage. The use of excess of bromine resulted in dibromo derivative [9-SMe2-6,11-Br2-7,8-C2B9H9] (5). Structures of the compounds prepared were determined using 11B-11B COSY NMR spectroscopy (for all halogen derivatives) and single crystal X-ray diffraction (for compounds 2, 3, and 5).  相似文献   

16.
Analysis of the structures of 8,8-(PPh3)2-8,7-nido-RhSB9H10 and 9,9-(PPh3)2-9,7,8-nido-RhC2B8H11 by RMS misfit calculations has confirmed that these rhodaheteroboranes possess nido 11-vertex cluster geometries in apparent contravention of Wade's rules. However, examination of the molecular structures of both species shows that the {RhP2} planes are inclined by ca. 66° with respect to the metal-bonded SB3 or CB3 faces, and that two weak ortho-CHRh agostic interactions occupy the vacant co-ordination position thereby created. As a consequence of these agostic bonds the Rh atom, and hence the overall cluster, is provided with an additional electron pair, meaning that their nido structures are now fully consistent with Wade's rules. The chelated diphosphine compound 8,8-(dppe)-8,7-nido-RhSB9H10 is similar to the PPh3 compound in showing the same agostic bonding. Attempts to prepare a bis-P(OMe)3 analogue result in ligand scavenging and the formation of 8,8,8-{P(OMe)3}3-8,7-nido-RhSB9H10. Similarly, reaction between Cs[6-arachno-SB9H12] and RhCl(dmpe)CO does not result in CO loss but in formation of 8,8-(dmpe)-8-(CO)-8,7-nido-RhSB9H10, shown to exist as a mixture of two of three possible rotamers. Deprotonation of 8,8-(PPh3)2-8,7-nido-RhSB9H10 and 8,8-(dppe)-8,7-nido-RhSB9H10 with MeLi yields the anions [1,1-(PPh3)2-1,2-closo-RhSB9H9] and [1,1-dppe-1,2-closo-RhSB9H9], respectively, with octadecahedral cage structures. It is argued that anion formation causes the agostic bonding to be `switched-off' and results in the cluster adopting the closo architecture predicted by Wade's rules. This structural change is fully reversible on reprotonation, and if reprotonation of [1,1-(dppe)-1,2-closo-RhSB9H9] is carried out in MeCN, the product 8,8-(dppe)-8-(MeCN)-8,7-nido-RhSB9H10 forms. Interestingly, 8,8-(dppe)-8-(MeCN)-8,7-nido-RhSB9H10 reconverts to 8,8-(dppe)-8,7-nido-RhSB9H10 on standing in CDCl3, suggesting that the agostic bonding is sufficiently strong to displace co-ordinated MeCN. All new compounds are fully characterised by multinuclear NMR spectroscopy and, in many cases, by single crystal X-ray diffraction.  相似文献   

17.
A novel iridium(I) complex bearing a chelate-coordinated pyridine-2-thiolate ligand [Ir(η2-SNC5H4)(PPh3)2] (2) was prepared by the reaction of iridium ethylene complex [IrCl(C2H4)(PPh3)2] (1) with lithium salt of pyridine-2-thiol (Li[SNC5H4]). On the treatment of iridium(I) complex 2 with chloroform, iridium(III) dichloro-complex [IrCl22-SNC5H4)(PPh3)2] (3) was formed. Reactions of complex 2 with methyldiphenylsilane, acetic acid, and p-tolylacetylene afforded iridium(III) hydride complexes [IrH(SiMePh2)(η2-SNC5H4)(PPh3)2] (4), [IrH(O2CCH3)(η2-SNC5H4)(PPh3)2] (5), and [IrH(CC(p-tolyl))(η2-SNC5H4)(PPh3)2] (6), respectively. Complex 2 catalyzed dimerization of terminal alkynes leading to enynes (7) with high E-selectivity via C-H bond activation.  相似文献   

18.
Compounds of the type [Ag(PPh3)3(HL)] {H2xspa=3(aryl)-2-sulfanylpropenoic acids: x = Clp [3-(2-chlorophenyl)-], -o-mp [3-(2-methoxyphenyl)-], -p-mp [3-(4-methoxyphenyl)-], -o-hp [3-(2-hydroxyphenyl)-], -p-hp [3-(4-hydroxyphenyl-); H2cpa = 2-cyclopentylidene-2-sulfanylacetic acid} were synthesized and characterised by IR and NMR (1H 13C and 31P) spectroscopy and by FAB mass spectrometry. The crystal structures of [Ag(PPh3)3(HClpspa)], [Ag(PPh3)3(H-o-mpspa)], [Ag(PPh3)3(H-p-mpspa)] and [Ag(PPh3)3(Hcpa)] reveal the presence of discrete molecular units containing an intramolecular O-H···S hydrogen bond between the S atom and one of the O atoms of the COOH group. This intramolecular hydrogen bond remains in [Ag(PPh3)3(H-o-hpspa)]·EtOH and [Ag(PPh3)3(H-p-hpspa)] but in both cases polymeric structures are built on the basis of O-H···O interactions that involve the -OH substituent of the phenyl group of the sulfanylpropenoate fragment.  相似文献   

19.
Optically active ligands of type Ph2PNHR (R = (R)-CHCH3Ph, (a); (R)-CHCH3Cy, (b); (R)-CHCH3Naph, (c)) and PhP(NHR)2 (R = (R)-CHCH3Ph, (d); (R)-CHCH3Cy, (e)) with a stereogenic carbon atom in the R substituent were synthesized. Reaction with [PdCl2(COD)2] produced [PdCl2P2] (1) (P = PhP(NHCHCH3Ph)2), whose molecular structure determined by X-ray diffraction showed cis disposition for the ligands. All nitrogen atoms of amino groups adopted S configuration. The new ligands reacted with allylic dimeric palladium compound [Pd(η3-2-methylallyl)Cl]2 to gave neutral aminophosphine complexes [Pd(η3-2-methylallyl)ClP] (2a-2e) or cationic aminophosphine complexes [Pd(η3-2-methylallyl)P2]BF4 (3a-3e) in the presence of the stoichiometric amount of AgBF4. Cationic complexes [Pd(η43-2-methylallyl)(NCCH3)P]BF4 (4a-4e) were prepared in solution to be used as precursors in the catalytic hydrovinylation of styrene. 31P NMR spectroscopy showed the existence of an equilibrium between the expected cationic mixed complexes 4, the symmetrical cationic complexes [Pd(η3-2-methylallyl)P2]BF4 (3) and [Pd(η3-2-methylallyl)(NCCH3)2]BF4 (5) coming from the symmetrization reaction. The extension of the process was studied with the aminophosphines (a-e) as well as with nonchiral monodentate phosphines (PCy3 (f), PBn3 (g), PPh3 (h), PMe2Ph (i)) showing a good match between the extension of the symmetrization and the size of the phosphine ligand. We studied the influence of such equilibria in the hydrovinylation of styrene because the behaviour of catalytic precursors can be modified substantially when prepared ‘in situ’. While compounds 3 and bisacetonitrile complex 5 were not active as catalysts, the [Pd(η3-2-methylallyl)(η2-styrene)2]+ species formed in the absence of acetonitrile showed some activity in the formation of codimers and dimers. Hydrovinylation reaction between styrene and ethylene was tested using catalytic precursors solutions of [Pd(η3-2-methylallyl)LP]BF4 ionic species (L = CH3CN or styrene) showing moderate activity and good selectivity. Better activities but lower selectivities were found when L = styrene. Only in the case of the precursor containing Ph2PNHCHCH3Ph (a) ligand was some enantiodiscrimination (10%) found.  相似文献   

20.
Reactions of [3,3-(PPh3)2-3-Cl-3-H-3,1,2-closo-RuC2B9H11] (1) and its exo-nido isomer [exo-5,6,10-{Ru(Ph3P)2Cl}-5,6,10-(μ-H)3-10-H-7,8-nido-C2B9H8] (2) with NH4PF6 in methanol or ethanol solution followed by heating in the presence of an excess of phenylacetylene (3) affords a mixture of two isomeric closo species [3,3-{(1′-3′-η3):(5′,6′-η2)-ortho-C6H4PPh2CHC(Ph)CHCHPh}-8-(σ-CHCHPh)-3,1,2-closo-RuC2B9H10] (4) and [3,3-{(1′-3′-η3):(5′,6′-η2)-ortho-C6H4PPh2CHC(Ph)CHCHPh}-4-(σ-CHCHPh)-3,1,2-closo-RuC2B9H10] (5) in which boron vertexes in β- and α-sites with respect to the cage carbons bear the (E)-CHCHPh group. The X-ray diffraction study of 4 together with the multinuclear NMR data for 4 and 5 revealed that such an unusual η32-phosphacarbocyclic ligand in both isomeric complexes is formed by specific insertion of the initially metal-bound PPh3 group into the chain of two alkyne molecules coupled in a “head-to-tail” fashion around the metal vertex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号