首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
We consider the space A(\mathbbT)A(\mathbb{T}) of all continuous functions f on the circle \mathbbT\mathbb{T} such that the sequence of Fourier coefficients [^(f)] = { [^(f)]( k ), k ? \mathbbZ }\hat f = \left\{ {\hat f\left( k \right), k \in \mathbb{Z}} \right\} belongs to l 1(ℤ). The norm on A(\mathbbT)A(\mathbb{T}) is defined by || f ||A(\mathbbT) = || [^(f)] ||l1 (\mathbbZ)\left\| f \right\|_{A(\mathbb{T})} = \left\| {\hat f} \right\|_{l^1 (\mathbb{Z})}. According to the well-known Beurling-Helson theorem, if f:\mathbbT ? \mathbbT\phi :\mathbb{T} \to \mathbb{T} is a continuous mapping such that || einf ||A(\mathbbT) = O(1)\left\| {e^{in\phi } } \right\|_{A(\mathbb{T})} = O(1), n ∈ ℤ then φ is linear. It was conjectured by Kahane that the same conclusion about φ is true under the assumption that || einf ||A(\mathbbT) = o( log| n | )\left\| {e^{in\phi } } \right\|_{A(\mathbb{T})} = o\left( {\log \left| n \right|} \right). We show that if $\left\| {e^{in\phi } } \right\|_{A(\mathbb{T})} = o\left( {\left( {{{\log \log \left| n \right|} \mathord{\left/ {\vphantom {{\log \log \left| n \right|} {\log \log \log \left| n \right|}}} \right. \kern-\nulldelimiterspace} {\log \log \log \left| n \right|}}} \right)^{1/12} } \right)$\left\| {e^{in\phi } } \right\|_{A(\mathbb{T})} = o\left( {\left( {{{\log \log \left| n \right|} \mathord{\left/ {\vphantom {{\log \log \left| n \right|} {\log \log \log \left| n \right|}}} \right. \kern-\nulldelimiterspace} {\log \log \log \left| n \right|}}} \right)^{1/12} } \right), then φ is linear.  相似文献   

2.
Let G ì \mathbb C G \subset {\mathbb C} be a finite region bounded by a Jordan curve L: = ?G L: = \partial G , let W: = \textext[`(G)] \Omega : = {\text{ext}}\bar{G} (with respect to [`(\mathbb C)] {\overline {\mathbb C}} ), $ \Delta : = \left\{ {z:\left| z \right| > 1} \right\} $ \Delta : = \left\{ {z:\left| z \right| > 1} \right\} , and let w = F(z) w = \Phi (z) be a univalent conformal mapping of Ω onto Δ normalized by $ \Phi \left( \infty \right) = \infty, \;\Phi '\left( \infty \right) > 0 $ \Phi \left( \infty \right) = \infty, \;\Phi '\left( \infty \right) > 0 . By A p (G); p > 0; we denote a class of functions f analytic in G and satisfying the condition
|| f ||App(G): = òG | f(z) |pdsz < ¥, \left\| f \right\|_{Ap}^p(G): = \int\limits_G {{{\left| {f(z)} \right|}^p}d{\sigma_z} < \infty, }  相似文献   

3.
Let C( \mathbbRm ) C\left( {{\mathbb{R}^m}} \right) be the space of bounded and continuous functions x:\mathbbRm ? \mathbbR x:{\mathbb{R}^m} \to \mathbb{R} equipped with the norm
|| x ||C = || x ||C( \mathbbRm ): = sup{ | x(t) |:t ? \mathbbRm } \left\| x \right\|C = {\left\| x \right\|_{C\left( {{\mathbb{R}^m}} \right)}}: = \sup \left\{ {\left| {x(t)} \right|:t \in {\mathbb{R}^m}} \right\}  相似文献   

4.
We study the problem of finding the best constant in the generalized Poincaré inequality
lpqr = min\frac|| y¢ ||Lp[0,1]|| y ||Lp[0,1],        ò01 | y(t) |r - 2y(t)dt = 0, {{\rm{\lambda }}_{pqr}} = \min \frac{{\left\| {y'} \right\|{L_p}[0,1]}}{{\left\| y \right\|{L_p}[0,1]}},\quad \quad \mathop {\int }\limits_0^1 {\left| {y(t)} \right|^{r - 2}}y(t)dt = 0,  相似文献   

5.
We show that the derivative of an arbitrary rational function R of degree n that increases on the segment [−1, 1] satisfies the following equality for all 0 < ε < 1 and p, q > 1:
|| R ||Lp[ - 1 + \upvarepsilon ,1 - \upvarepsilon ]C ·9n( 1 - 1 / p )\upvarepsilon 1 / p - 1 / q - 1|| R ||Lq[ - 1,1 ], {\left\| {R^{\prime}} \right\|_{{L_p}\left[ { - 1 + {\upvarepsilon },1 - {\upvarepsilon }} \right]}} \leq C \cdot {9^{n\left( {1 - {{1} \left/ {p} \right.}} \right)}}{{\upvarepsilon }^{{{1} \left/ {p} \right.} - {{1} \left/ {q} \right.} - 1}}{\left\| {R} \right\|_{{L_q}\left[ { - 1,1} \right]}},  相似文献   

6.
LetR n be n-dimensional Euclidean space with n>-3. Demote by Ω n the unit sphere inR n. ForfɛL n ) we denote by σ N δ its Cesàro means of order σ for spherical harmonic expansions. The special value l = \tfracn - 22\lambda = \tfrac{{n - 2}}{2} of σ is known as the critical one. For 0<σ≤λ, we set p0 = \tfrac2ld+ lp_0 = \tfrac{{2\lambda }}{{\delta + \lambda }} . This paper proves that
limN ? ¥ || sNd (f) - f ||p0 = 0\mathop {\lim }\limits_{N \to \infty } \left\| {\sigma _N^\delta (f) - f} \right\|p_0 = 0  相似文献   

7.
This paper resolves a number of problems in the perturbation theory of linear operators, linked with the 45-year-old conjecure of M. G. Kreĭn. In particular, we prove that every Lipschitz function is operator-Lipschitz in the Schatten–von Neumann ideals S α , 1 < α < ∞. Alternatively, for every 1 < α < ∞, there is a constant c α > 0 such that
|| f(a) - f(b) ||a \leqslant ca|| f ||\textLip 1|| a - b ||a, {\left\| {f(a) - f(b)} \right\|_{\alpha }} \leqslant {c_{\alpha }}{\left\| f \right\|_{{{\text{Lip}}\,{1}}}}{\left\| {a - b} \right\|_{\alpha }},  相似文献   

8.
In the case where a 2π-periodic function f is twice continuously differentiable on the real axis ℝ and changes its monotonicity at different fixed points y i ∈ [− π, π), i = 1,…, 2s, s ∈ ℕ (i.e., on ℝ, there exists a set Y := {y i } i∈ℤ of points y i = y i+2s + 2π such that the function f does not decrease on [y i , y i−1] if i is odd and does not increase if i is even), for any natural k and n, nN(Y, k) = const, we construct a trigonometric polynomial T n of order ≤n that changes its monotonicity at the same points y i Y as f and is such that
*20c || f - Tn || £ \fracc( k,s )n2\upomega k( f",1 \mathord\vphantom 1 n n ) ( || f - Tn || £ \fracc( r + k,s )nr\upomega k( f(r),1 \mathord/ \vphantom 1 n n ),    f ? C(r),    r 3 2 ), \begin{array}{*{20}{c}} {\left\| {f - {T_n}} \right\| \leq \frac{{c\left( {k,s} \right)}}{{{n^2}}}{{{\upomega }}_k}\left( {f',{1 \mathord{\left/{\vphantom {1 n}} \right.} n}} \right)} \\ {\left( {\left\| {f - {T_n}} \right\| \leq \frac{{c\left( {r + k,s} \right)}}{{{n^r}}}{{{\upomega }}_k}\left( {{f^{(r)}},{1 \mathord{\left/{\vphantom {1 n}} \right.} n}} \right),\quad f \in {C^{(r)}},\quad r \geq 2} \right),} \\ \end{array}  相似文献   

9.
We consider the model of atmosphere dynamics and prove the uniqueness of a solution in a bounded domain W ì \mathbbR3 \Omega \subset {\mathbb{R}^3} in the space V(Q) of weak solutions equipped with the finite norm
|| f ||V(Q)2 = \textvrai  supt ? [ 0,T ] || f ||L2( W)2 + || ?3f ||L2(Q)2. \left\| f \right\|_{V(Q)}^2 = \mathop {{\text{vrai}}\,{ \sup }}\limits_{t \in \left[ {0,T} \right]} \left\| f \right\|_{{L_2}\left( \Omega \right)}^2 + \left\| {{\nabla_3}f} \right\|_{{L_2}(Q)}^2.  相似文献   

10.
We prove that max |p′(x)|, where p runs over the set of all algebraic polynomials of degree not higher than n ≥ 3 bounded in modulus by 1 on [−1, 1], is not lower than ( n - 1 ) \mathord
/ \vphantom ( n - 1 ) ?{1 - x2} ?{1 - x2} {{\left( {n - 1} \right)} \mathord{\left/{\vphantom {{\left( {n - 1} \right)} {\sqrt {1 - {x^2}} }}} \right.} {\sqrt {1 - {x^2}} }} for all x ∈ (−1, 1) such that | x | ? èk = 0[ n \mathord/ \vphantom n 2 2 ] [ cos\frac2k + 12( n - 1 )p, cos\frac2k + 12np ] \left| x \right| \in \bigcup\nolimits_{k = 0}^{\left[ {{n \mathord{\left/{\vphantom {n 2}} \right.} 2}} \right]} {\left[ {\cos \frac{{2k + 1}}{{2\left( {n - 1} \right)}}\pi, \cos \frac{{2k + 1}}{{2n}}\pi } \right]} .  相似文献   

11.
Fourier series are considered on the one-dimensional torus for the space of periodic distributions that are the distributional derivative of a continuous function. This space of distributions is denoted Ac(\mathbbT){\mathcal{A}}_{c}(\mathbb{T}) and is a Banach space under the Alexiewicz norm, ||f||\mathbbT=sup|I| £ 2pI f|\|f\|_{\mathbb{T}}=\sup_{|I|\leq2\pi}|\int_{I} f|, the supremum being taken over intervals of length not exceeding 2π. It contains the periodic functions integrable in the sense of Lebesgue and Henstock–Kurzweil. Many of the properties of L 1 Fourier series continue to hold for this larger space, with the L 1 norm replaced by the Alexiewicz norm. The Riemann–Lebesgue lemma takes the form [^(f)](n)=o(n)\hat{f}(n)=o(n) as |n|→∞. The convolution is defined for f ? Ac(\mathbbT)f\in{\mathcal{A}}_{c}(\mathbb{T}) and g a periodic function of bounded variation. The convolution commutes with translations and is commutative and associative. There is the estimate ||f*g|| £ ||f||\mathbbT ||g||BV\|f\ast g\|_{\infty}\leq\|f\|_{\mathbb{T}} \|g\|_{\mathcal{BV}}. For g ? L1(\mathbbT)g\in L^{1}(\mathbb{T}), ||f*g||\mathbbT £ ||f||\mathbb T ||g||1\|f\ast g\|_{\mathbb{T}}\leq\|f\|_{\mathbb {T}} \|g\|_{1}. As well, [^(f*g)](n)=[^(f)](n) [^(g)](n)\widehat{f\ast g}(n)=\hat{f}(n) \hat{g}(n). There are versions of the Salem–Zygmund–Rudin–Cohen factorization theorem, Fejér’s lemma and the Parseval equality. The trigonometric polynomials are dense in Ac(\mathbbT){\mathcal{A}}_{c}(\mathbb{T}). The convolution of f with a sequence of summability kernels converges to f in the Alexiewicz norm. Let D n be the Dirichlet kernel and let f ? L1(\mathbbT)f\in L^{1}(\mathbb{T}). Then ||Dn*f-f||\mathbbT?0\|D_{n}\ast f-f\|_{\mathbb{T}}\to0 as n→∞. Fourier coefficients of functions of bounded variation are characterized. The Appendix contains a type of Fubini theorem.  相似文献   

12.
It is proved that if Ω ⊂ Rn {R^n}  is a bounded Lipschitz domain, then the inequality || u ||1 \leqslant c(n)\textdiam( W)òW | eD(u) | {\left\| u \right\|_1} \leqslant c(n){\text{diam}}\left( \Omega \right)\int\limits_\Omega {\left| {{\varepsilon^D}(u)} \right|} is valid for functions of bounded deformation vanishing on ∂Ω. Here eD(u) {\varepsilon^D}(u) denotes the deviatoric part of the symmetric gradient and òW | eD(u) | \int\limits_\Omega {\left| {{\varepsilon^D}(u)} \right|} stands for the total variation of the tensor-valued measure eD(u) {\varepsilon^D}(u) . Further results concern possible extensions of this Poincaré-type inequality. Bibliography: 27 titles.  相似文献   

13.
The Heisenberg–Pauli–Weyl (HPW) uncertainty inequality on \mathbbRn{\mathbb{R}^n} says that
|| f ||2Ca,b|| |x|a f||2\fracba+b|| (-D)b/2f||2\fracaa+b.\| f \|_2 \leq C_{\alpha,\beta}\| |x|^\alpha f\|_2^\frac{\beta}{\alpha+\beta}\| (-\Delta)^{\beta/2}f\|_2^\frac{\alpha}{\alpha+\beta}.  相似文献   

14.
In this paper we study tree martingales and proved that if 1≤α,β〈∞,1≤p〈∞ then for every predictable tree martingale f=(ft,t∞T)and E[σ^(P)(f)]〈∞,E[S^(P)(f)]〈∞,it holds that ‖(St^(p)(f),t∈T)‖M^α∞≤Cαβ‖f‖p^αβ,‖(σt^(p)(f),t∈T)‖M^α,β‖f‖P^αβ,where Cαβ depends only on α and β.  相似文献   

15.
On Approximation by Reciprocals of Spherical Harmonics in L p Norm   总被引:1,自引:0,他引:1  
Let S^1-1,q≥2,be the surface of the unit sphere in the Euclidean space R^1,f(x)∈L^p(S^q-1),f(x)≥0,f absohutely unegual to 0,1≤p≤+∞,Then,it is proved in the present paper that there is a spherical harmonics PN(x) of order≤N and a constant C〉0 such that where ω(f,δ)L^p=sup 0〈t≤δ‖St(f)-f‖L^p is a kind of moduli of continuity and ^‖f-1/PN‖L^p≤Cω(f,N^-1)L^p,St(f,μ)=1/|S^q-2|Sin^2λt ∫-μμ’=t f(μ')dμ' is a translation operator.  相似文献   

16.
Let V be a 2m-dimensional symplectic vector space over an algebraically closed field K. Let $ \mathfrak{B}_n^{(f)} Let V be a 2m-dimensional symplectic vector space over an algebraically closed field K. Let \mathfrakBn(f) \mathfrak{B}_n^{(f)} be the two-sided ideal of the Brauer algebra \mathfrakBn( - 2m ) {\mathfrak{B}_n}\left( { - 2m} \right) over K generated by e 1 e 3⋯ e 2f-1 where 0 ≤ f ≤ [n/2]. Let HTf ?n \mathcal{H}\mathcal{T}_f^{ \otimes n} be the subspace of partial-harmonic tensors of valence f in V n . In this paper we prove that dimHTf ?n \mathcal{H}\mathcal{T}_f^{ \otimes n} and dim \textEn\textdK\textSp(V)( V ?n \mathord
/ \vphantom V ?n V ?n V ?n\mathfrakBn(f) ) {\text{En}}{{\text{d}}_{K{\text{Sp}}(V)}}\left( {{{{V^{ \otimes n}}} \mathord{\left/{\vphantom {{{V^{ \otimes n}}} {{V^{ \otimes n}}}}} \right.} {{V^{ \otimes n}}}}\mathfrak{B}_n^{(f)}} \right) are both independent of K, and the natural homomorphism from \mathfrakBn( - 2m ) \mathord/ \vphantom ( - 2m ) \mathfrakBn(f) \mathfrakBn(f) {\mathfrak{B}_n}{{\left( { - 2m} \right)} \mathord{\left/{\vphantom {{\left( { - 2m} \right)} {\mathfrak{B}_n^{(f)}}}} \right.} {\mathfrak{B}_n^{(f)}}} to \textEn\textdK\textSp(V)( V ?n \mathord/ \vphantom V ?n V ?n V ?n\mathfrakBn(f) ) {\text{En}}{{\text{d}}_{K{\text{Sp}}(V)}}\left( {{{{V^{ \otimes n}}} \mathord{\left/{\vphantom {{{V^{ \otimes n}}} {{V^{ \otimes n}}}}} \right.} {{V^{ \otimes n}}}}\mathfrak{B}_n^{(f)}} \right) is always surjective. We show that HTf ?n \mathcal{H}\mathcal{T}_f^{ \otimes n} has a Weyl filtration and is isomorphic to the dual of V ?n\mathfrakBn(f) \mathord/ \vphantom V ?n\mathfrakBn(f) V V ?n\mathfrakBn( f + 1 ) {{{{V^{ \otimes n}}\mathfrak{B}_n^{(f)}} \mathord{\left/{\vphantom {{{V^{ \otimes n}}\mathfrak{B}_n^{(f)}} V}} \right.} V}^{ \otimes n}}\mathfrak{B}_n^{\left( {f + 1} \right)} as an \textSp(V) - ( \mathfrakBn( - 2m ) \mathord/ \vphantom ( - 2m ) \mathfrakBn( f + 1 ) \mathfrakBn( f + 1 ) ) {\text{Sp}}(V) - \left( {{\mathfrak{B}_n}{{\left( { - 2m} \right)} \mathord{\left/{\vphantom {{\left( { - 2m} \right)} {\mathfrak{B}_n^{\left( {f + 1} \right)}}}} \right.} {\mathfrak{B}_n^{\left( {f + 1} \right)}}}} \right) -bimodule. We obtain an \textSp(V) - \mathfrakBn {\text{Sp}}(V) - {\mathfrak{B}_n} -bimodules filtration of V n such that each successive quotient is isomorphic to some ?( l) ?zg,l\mathfrakBn \nabla \left( \lambda \right) \otimes {z_{g,\lambda }}{\mathfrak{B}_n} with λ ⊢ n 2g, ℓ(λ)≤m and 0 ≤ g ≤ [n/2], where ∇(λ) is the co-Weyl module associated to λ and z g is an explicitly constructed maximal vector of weight λ. As a byproduct, we show that each right \mathfrakBn {\mathfrak{B}_n} -module zg,l\mathfrakBn {z_{g,\lambda }}{\mathfrak{B}_n} is integrally defined and stable under base change.  相似文献   

17.
18.
We consider a new Sobolev type function space called the space with multiweighted derivatives $ W_{p,\bar \alpha }^n $ W_{p,\bar \alpha }^n , where $ \bar \alpha $ \bar \alpha = (α 0, α 1,…, α n ), α i ∈ ℝ, i = 0, 1,…, n, and $ \left\| f \right\|W_{p,\bar \alpha }^n = \left\| {D_{\bar \alpha }^n f} \right\|_p + \sum\limits_{i = 0}^{n - 1} {\left| {D_{\bar \alpha }^i f(1)} \right|} $ \left\| f \right\|W_{p,\bar \alpha }^n = \left\| {D_{\bar \alpha }^n f} \right\|_p + \sum\limits_{i = 0}^{n - 1} {\left| {D_{\bar \alpha }^i f(1)} \right|} ,
$ D_{\bar \alpha }^0 f(t) = t^{\alpha _0 } f(t),D_{\bar \alpha }^i f(t) = t^{\alpha _i } \frac{d} {{dt}}D_{\bar \alpha }^{i - 1} f(t),i = 1,2,...,n $ D_{\bar \alpha }^0 f(t) = t^{\alpha _0 } f(t),D_{\bar \alpha }^i f(t) = t^{\alpha _i } \frac{d} {{dt}}D_{\bar \alpha }^{i - 1} f(t),i = 1,2,...,n   相似文献   

19.
Let U n be the unit polydisk in C n and S be the space of functions of regular variation. Let 1 ≤ p < ∞, ω = (ω 1, ..., ω n ), ω j S(1 ≤ jn) and fH(U n ). The function f is said to be in holomorphic Besov space B p (ω) if
$ \left\| f \right\|_{B_p (\omega )}^p = \int_{U^n } {\left| {Df(z)} \right|^p \prod\limits_{j = 1}^n {\frac{{\omega _j (1 - |z_j |)}} {{(1 - |z_j |^{2 - p} )}}} dm_{2n} (z) < + \infty } $ \left\| f \right\|_{B_p (\omega )}^p = \int_{U^n } {\left| {Df(z)} \right|^p \prod\limits_{j = 1}^n {\frac{{\omega _j (1 - |z_j |)}} {{(1 - |z_j |^{2 - p} )}}} dm_{2n} (z) < + \infty }   相似文献   

20.
Considering the positive d-dimensional lattice point Z + d (d ≥ 2) with partial ordering ≤, let {X k: kZ + d } be i.i.d. random variables taking values in a real separable Hilbert space (H, ‖ · ‖) with mean zero and covariance operator Σ, and set $ S_n = \sum\limits_{k \leqslant n} {X_k } $ S_n = \sum\limits_{k \leqslant n} {X_k } , nZ + d . Let σ i 2, i ≥ 1, be the eigenvalues of Σ arranged in the non-increasing order and taking into account the multiplicities. Let l be the dimension of the corresponding eigenspace, and denote the largest eigenvalue of Σ by σ 2. Let logx = ln(xe), x ≥ 0. This paper studies the convergence rates for $ \sum\limits_n {\frac{{\left( {\log \log \left| n \right|} \right)^b }} {{\left| n \right|\log \left| n \right|}}} P\left( {\left\| {S_n } \right\| \geqslant \sigma \varepsilon \sqrt {2\left| n \right|\log \log \left| n \right|} } \right) $ \sum\limits_n {\frac{{\left( {\log \log \left| n \right|} \right)^b }} {{\left| n \right|\log \left| n \right|}}} P\left( {\left\| {S_n } \right\| \geqslant \sigma \varepsilon \sqrt {2\left| n \right|\log \log \left| n \right|} } \right) . We show that when l ≥ 2 and b > −l/2, E[‖X2(log ‖X‖) d−2(log log ‖X‖) b+4] < ∞ implies $ \begin{gathered} \mathop {\lim }\limits_{\varepsilon \searrow \sqrt {d - 1} } (\varepsilon ^2 - d + 1)^{b + l/2} \sum\limits_n {\frac{{\left( {\log \log \left| n \right|} \right)^b }} {{\left| n \right|\log \left| n \right|}}P\left( {\left\| {S_n } \right\| \geqslant \sigma \varepsilon \sqrt 2 \left| n \right|\log \log \left| n \right|} \right)} \hfill \\ = \frac{{K(\Sigma )(d - 1)^{\frac{{l - 2}} {2}} \Gamma (b + l/2)}} {{\Gamma (l/2)(d - 1)!}} \hfill \\ \end{gathered} $ \begin{gathered} \mathop {\lim }\limits_{\varepsilon \searrow \sqrt {d - 1} } (\varepsilon ^2 - d + 1)^{b + l/2} \sum\limits_n {\frac{{\left( {\log \log \left| n \right|} \right)^b }} {{\left| n \right|\log \left| n \right|}}P\left( {\left\| {S_n } \right\| \geqslant \sigma \varepsilon \sqrt 2 \left| n \right|\log \log \left| n \right|} \right)} \hfill \\ = \frac{{K(\Sigma )(d - 1)^{\frac{{l - 2}} {2}} \Gamma (b + l/2)}} {{\Gamma (l/2)(d - 1)!}} \hfill \\ \end{gathered} , where Γ(·) is the Gamma function and $ \prod\limits_{i = l + 1}^\infty {((\sigma ^2 - \sigma _i^2 )/\sigma ^2 )^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } $ \prod\limits_{i = l + 1}^\infty {((\sigma ^2 - \sigma _i^2 )/\sigma ^2 )^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号