首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Electronic properties of benzene in water were investigated by a sequential quantum mechanical/molecular dynamics approach. Emphasis was placed on the analysis of the structure, polarization effects, and ionization spectrum. By adopting a polarizable model for both benzene and water the structure of the benzene-water solution is in good agreement with data from first principles molecular dynamics. Further, strong evidence that water molecules acquire enhanced orientational order near the benzene molecule is found. Upon hydration, the quadrupole moment of benzene is not significantly changed in comparison with the gas-phase value. We are also reporting results for the dynamic polarizability of benzene in water. Our results indicate that the low energy behaviour of the dynamic polarizability of gas-phase and hydrated benzene is quite similar. Outer valence Green's function calculations for benzene in liquid water show a splitting of the gas-phase energy levels associated with the 1e(1g)(π), 2e(2g), and 2e(1u) orbitals upon hydration. Lifting of the orbitals degeneracy and redshift of the outer valence bands is related to symmetry breaking of the benzene structure in solution and polarization effects from the surrounding water molecules.  相似文献   

2.
Benzene molecules confined in carbon nanotubes of varying radii are employed as semiconductors in electronic nanodevices, and their orientation determines the electrical properties of the system. In this paper, we investigate the interaction energy of all the possible configurations of a benzene molecule inside various carbon nanotubes and then we determine the equilibrium configuration. We adopt the continuous approach together with the semi-empirical Lennard-Jones potential function to model van der Waals interaction between a benzene molecule and a carbon nanotube. This approach results in an analytical expression, which accurately approximates the interaction energy and can be readily used to generate numerical data. We find that horizontal, tilted and perpendicular configurations on the axis of the carbon nanotube are all possible equilibrium configurations of the benzene molecule when the radius of the carbon nanotube is less than 5.580 Å. However, when the radius of the carbon nanotube is larger than 5.580 Å an offset horizontal orientation is the only possible equilibrium configuration of the benzene molecule. In the limiting case, the orientation of a benzene molecule on a graphene sheet can be derived simply by letting the radius of the carbon nanotube tend to infinity.  相似文献   

3.
In the first ever attempt to study the adsorption of organic molecules on high-index Si surfaces, we investigated the adsorption of benzene on Si(5 5 12)-(2x1) by using variable-low-temperature scanning tunneling microscopy and density-functional theory (DFT) calculations. Several distinct adsorption structures of the benzene molecule were found. In one structure, the benzene molecule binds to two adatoms between the dimers of D3 and D2 units in a tilted butterfly configuration. This structure is produced by the formation of di-sigma bonds with the substrate and of two C[Double Bond]C double bonds in the benzene molecule. In another structure, the molecule adsorbs on honeycomb chains with a low adsorption energy because of strain effects. Our DFT calculations predict that the adsorption energies of benzene are 1.03-1.20 eV on the adatoms and 0.22 eV on the honeycomb chains.  相似文献   

4.
We studied the adsorption and reaction of cyclohexene (C6H10) on Ni(111) at different temperatures with high-resolution in-situ X-ray photoelectron spectroscopy (HR-XPS). For exposure at 125 K, we find intact cyclohexene with two distinct C 1s signals at 283.3 and 284.2 eV, due to the nonequivalent carbon atoms in the molecule. The energetic separation is significantly increased relative to the gas-phase value, due to the interaction with the substrate. Upon exposure at 210 K, complete dehydrogenation of cyclohexene to benzene (C6H6) and hydrogen is observed; coverage-dependent changes of the benzene adsorption site occur in a way similar to those for pure benzene layers, which indicates a phase separation in benzene and hydrogen islands. The thermal evolution of the adsorbed layers was studied by temperature-programmed (TP-) XPS and temperature-programmed desorption spectroscopy (TPD). Upon heating, the benzene + hydrogen layer formed at 210 K shows a coverage-dependent reorientation of the benzene molecules during partial desorption. The cyclohexene layer adsorbed at 125 K only shows partial conversion of cyclohexene to benzene and hydrogen upon heating to 185 or 210 K, with the remaining cyclohexene being stable up to approximately 300 K. We propose that upon heating these molecules are stabilized by coadsorbed benzene and hydrogen; furthermore, the mobility of benzene and hydrogen in this coadsorbed layer is reduced, so that no phase separation can occur.  相似文献   

5.
Molecular dynamics simulations of pure benzene and a poly(oxyethylene) chain in benzene are performed. The simulation of pure benzene is found to agree excellently with previous simulations despite using a different force field. A comparison is made between the results of simulations of the poly(oxyethylene) chain in benzene and in water and of stochastic simulations with respect to mean torsional angles, trans/gauche fractions, and transition rates. Characteristic deviations are found for the simulation in water and explained by specific atomic interactions, while there is satisfactory agreement with a stochastic simulation based upon the simple Langevin equation using a friction coefficient of 1 ps?1. The characteristic ratio of poly(oxyethylene) in benzene is calculated on the basis of the rotational isomeric state model. © 1992 by John Wiley & Sons, Inc.  相似文献   

6.
We modelled the adsorption of benzene, fluorobenzene and meta-di-fluorobenzene on Cu(110) by Density Functional Theory. We found that the adsorption configuration depends on the coverage. At high coverage, benzene assumes a tilted position, while at low coverage a horizontal slightly distorted geometry is favoured. Functionalizing the benzene ring with one or two fluorine atoms weakens the bonding to the surface. A rotation is induced, which decreases the distance of the fluorine atom from the surface. STM simulations reveal that details about both, benzene adsorption geometry and fluorine position, can be only detected at short tip-surface distances.  相似文献   

7.
Organoclay sorption of benzene as a function of total organic carbon content   总被引:15,自引:0,他引:15  
The sorption of benzene to bentonite, activated carbon, and two organo-clays synthesized with the quaternary ammonium organic cations hexadecyltrimethylammonium (HDTMA) and benzyltriethylammonium (BTEA) was quantified as a function of total organic carbon content. The unmodified bentonite sorbed no benzene, while the activated carbon exhibited the strongest benzene uptake. For the organoclays, organic cations were exchanged onto Wyoming bentonite at four different percentages of the clay's cation exchange capacity. For HDTMA clay, in which partitioning is the dominant sorptive medium, it was determined that benzene sorption increased as the total organic carbon content increased (as the clay became more hydrophobic). In contrast, the sorption of benzene to BTEA clay, an adsorptive clay, decreased as the total organic carbon content of the clay was increased. It is believed that the sorptive capacity of BTEA clay decreases due to the formation of positively charged dimers on the clay's surface that block access to the sorptive sites. The organoclays sorbed more benzene than the unmodified bentonite, but less than the activated carbon.  相似文献   

8.
The synthesis and structural characterization of the macrobicyclic ligand 1 containing a reducible hexakis-(phenylthio)benzene electron-acceptor site is described. It is based on the condensation of the tetraoxa-diazamacrocycle 3 with a suitably functionalized derivative 4 of hexakis(phenylthio)benzene. Complexation of a potassium cation by 1 gives the corresponding cryptate 2 , with a stability constant of ca. 4000 M ?1 as determined by 1H-NMR titration in CD3CN. The reduction potential of the hexakis(phenylthio)benzene electron-acceptor site in 2 is shifted by 170 mV towards more positive values with respect to that in 1 by complexation of potassium.  相似文献   

9.
Summary The retention of benzene derivatives with nonpolar and polar substituents on a porous methacrylate copolymer containing epoxy groups using both nonpolar and polar eluents was investigated. When n-hexane is used as the eluent, the retention of n-alkylbenzenes and polymethylbenzenes is weaker than that of benzene. In the case of benzene derivatives containing polar functional groups their capacity ratios (k) on this porous polymer increases approximately linearly with the increase of the adsorbate molecules dipole moment. The retention characteristics of the methacrylate copolymer were compared with that of a styrene-divinylbenzene copolymer and silica gels with a hydroxylated surface and with a surface modified by chemically bonded alkylsilyl groups.  相似文献   

10.
Self-assembled cylindrical capsule 1 is reversibly formed from dimerization of two tetraimide resorcinarenes. Studies of guest exchange involving host capsule 1 reveal a mechanistic continuum for exchange that depends on the structure of the guest. Kinetic and dynamic NMR measurements demonstrate the direct displacement of one guest by another. Surprisingly, in the case of benzene exchange in the pairwise encapsulation of benzene and p-xylene, the incoming benzene occupies the same half of the capsule as the outgoing benzene. As the size of the guests increases, solvent-bridged intermediates determine the rates; empty volumes on the molecular scale need not be invoked.  相似文献   

11.
Yunxiang C  Xin J 《Talanta》1984,31(7):556-558
A new method for the spectrofluorimetric determination of water in organic solvents has been developed. It is based on formation of the exciplex of pyridoxal with water. The procedure is sensitive, reproducible and useful for the determination of trace water in cyclohexane, petroleum ether, benzene, carbon tetrachloride, diethyl ether, tetrahydrofuran, dioxan, etc. The solubility of water in benzene at various temperatures has been determined.  相似文献   

12.
A palladium-pivalic acid cocatalyst system has been developed that exhibits unprecedented reactivity in direct arylation. This reactivity is illustrated with the first examples of high yielding direct metalation-arylation reactions of a completely unactivated arene, benzene. Experimental and computational evidence indicates that the pivalate anion is a key component in the palladation/C-H bond breaking event, that it lowers the energy of C-H bond cleavage and acts as a catalytic proton shuttle from benzene to the stoichiometric carbonate base. Eight examples of substituted aryl bromides are included which undergo direct arylation with benzene in 55-85% yield.  相似文献   

13.
Deprotonation of the nitrogen atoms of the two pyrrole rings of 1,3-bis-{[(1'-pyrrol-2-yl)-1,1'-dimethyl]methyl}benzene with KH followed by further reaction with either VCl 3(THF) 3 or with VCl 2(TMEDA) 2 respectively gave the paramagnetic complexes [1,3-bis-{[(1'-pyrrol-2-yl)-1,1'-dimethyl]methyl}benzene]VCl(DME) ( 1) and [1,3-bis-{[(1'-pyrrol-2-yl)-1,1'-dimethyl]methyl}benzene]V(THF) 3 ( 2). Further reduction with the appropriate amount of KH afforded diamagnetic dinuclear [1,3-bis-{[(1'-pyrrol-2-yl)-1,1'-dimethyl]methyl}benzene]V} 2] ( 3). In complex 3, the bridging interaction between the two metal centers is realized via the ligand central benzene ring. Density functional theory calculations have elucidated the nature of the electronic interaction between the two metals with the bridging pi-system thus accounting for its visible structural distortion. Calculations also pointed out the presence of only a weak V-V bond in spite of the short V-V distance.  相似文献   

14.
Host/guest interactions in the cyclophane-2/benzene system have been investigated by absorption and fluorescence spectroscopy in dichloromethane. The cyclophane serves as a host and the benzene as a guest. Absorption and fluorescence titration experiments are carried out by holding either the concentration of the host or guest constant while varying the concentration of the other component. When the concentration of benzene is kept constant, an isostilbic point at 288 nm is observed in the fluorescence spectral data, suggesting that only two absorbing species are present in equilibrium. Keeping the concentration of cyclophane-2 constant while increasing the concentration of benzene results in a hyposchromic shift of the emission peaks in the range 275–360 nm. The shift is attributed to interaction of the cyclophane with benzene. The average association constant of cyclophane-2 with benzene, K a = 425 ± 54 M?1, obtains from fitting the absorption and the fluorescence spectral data to the Bourson et al. equation using non-linear regression analysis.  相似文献   

15.
The adsorption and diffusion of a binary mixture of supercritical CO2 and benzene on silicalite (MFI-type) have been studied through the grand canonical Monte Carlo and molecular dynamics (MD) simulations. The adsorption behavior of pure CO2 on silicalite was discussed in detail from the adsorption isotherms, adsorption sites, interaction energies, and isosteric heats of adsorption. For the mixture, the influences of temperature, pressure and composition on the adsorption isotherms have been examined. The adsorption site behavior of the mixture has been analyzed, and benzene molecules get adsorbed preferentially in the more spacious channel intersection positions. These simulation results suggest that SC-CO2 fluid can be used as an efficient desorbent of larger aromatics in the zeolite material. The diffusion characteristic for the benzene/CO2 mixture was studied on the basis of MD simulation. It was found that the large coadsorbed benzene molecule has a pronounced effect on the CO2 diffusion in the mixture, while the mobility of benzene molecules is very small due to geometrical restrictions.  相似文献   

16.
Benzene adsorption behavior in a large family of 12R window zeolites (X, Y, EMT, Beta and LTL) has been examined by means of in-situ FTIR spectroscopy and correlated with the zeolite structure, the type and number of counter-ions, and the negative charge on framework oxygen atoms of zeolites. The effect of coadsorption of HCl, NH3 and CH3NH2 on the benzene location has also been studied. The present work illustrates that besides the benzene adsorption on counter ions of zeolites, the 12R windows could also be the adsorption sites for benzene. Upon adsorption of coadsorbates such as HCl, NH3 and CH3NH2, the migration of preadsorbed benzene molecules from one type of adsorption sites towards another, i.e. from 12R windows towards the cations for HCl and opposite direction for NH3 and CH3NH2, has been evidenced. The lack of adsorption of benzene on 12R windows of NaBeta even upon coadsorption of a series of basic molecules reveals that benzene adsorption on 12R windows is most likely governed by a molecular recognition effect where benzene molecule and 12R window should have the adapted chemical and structural properties like in enzyme-substrate system and zeolites can be referred to as solid enzymes or zeo-enzymes. This paper indicates also that the adsorption properties of zeolites can be modified and accommodated by introduction of a co-adsorbate.  相似文献   

17.
The complex [Ru(5,6-Me2Phen)3]tfpb2 has been examined as a solid-state benzene and oxygen sensor. The crystalline solid undergoes a reversible vapochromic shift of the emission lambda max to higher energy in the presence of benzene. Additionally, in the presence of oxygen the solid exhibits linear Stern-Volmer quenching behavior. When simultaneously exposed to benzene vapor and oxygen the crystals uptake benzene which inhibits the diffusion of oxygen in the lattice; very little quenching is observed. However, when benzene is removed from the carrier gas, partial loss of benzene occurs and oxygen diffusion is restored resulting in quenching of the emission. The practicality of this crystalline solid as a benzene sensor was investigated by examination of a lower concentration of benzene vapor (0.76%).  相似文献   

18.
Sum frequency generation surface vibrational spectroscopy and kinetic measurements using gas chromatography have been used to identify a reactive surface intermediate in situ during hydrogenation of benzene on a Pt(111) single crystal surface at Torr pressures. Upon adsorption at 310 K, both chemisorbed and physisorbed benzene coexist on the surface, a result which has not previously been observed. Kinetic measurements show a linear compensation effect for the production of both cyclohexane and cyclohexene. From these data the isokinetic temperature was identified and correlated to the chemisorbed benzene species, which were probed by means of vibrational spectroscopy. Additionally, chemisorbed benzene was determined to be a reactive intermediate, which is critical for hydrogenation.  相似文献   

19.
We present the molecular dynamics study of benzene molecules confined into the single wall carbon nanotube. The local structure and orientational ordering of benzene molecules are investigated. It is found that the molecules mostly group in the middle distance from the axis of the tube to the wall. The molecules located in the vicinity of the wall demonstrate some deviation from planar shape. There is a tilted orientational ordering of the molecules which depends on the location of the molecule. It is shown that the diffusion coefficient of the benzene molecules is very small at the conditions we report here. © 2015 Wiley Periodicals, Inc.  相似文献   

20.
We have performed a theoretical study on the dehydrogenation of benzene and pyridine molecules on Cu(100) induced by a scanning tunneling microscope (STM). Density functional theory calculations have been used to characterize benzene, pyridine, and different dehydrogenation products. The adiabatic pathways for single and double dehydrogenation have been evaluated with the nudge elastic band method. After identification of the transition states, the analysis of the electronic structure along the reaction pathway yields interesting information on the electronic process that leads to H-scission. The adiabatic barriers show that the formation of double dehydrogenated fragments is difficult and probably beyond reach under the actual experimental conditions. However, nonadiabatic processes cannot be ruled out. Hence, in order to identify the final dehydrogenation products, the inelastic spectra are simulated and compared with the experimental ones. We can then assign phenyl (C6H5) and alpha-pyridil (alpha-C5H4N) as the STM-induced dehydrogenation products of benzene and pyridine, respectively. Our simulations permit us to understand why phenyl, pyridine, and alpha-pyridil present tunneling-active C-H stretch modes in opposition to benzene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号