首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, formulas for the reflection and transmission coefficients of one-dimensional linear water waves propagating over a submerged structure with a cycloidal cross section in presence of a sloping beach are determined. In the specialized literature, the previous coefficients are obtained mainly for the limit of linear water waves, considering that the water depth upstream and downstream of the structure is flat. For the analysis, we have obtained an approximate analytical solution to the dimensionless Modified Mild-Slope Equation, which models the interactions of a wide range of water waves, from short waves to long waves. The results shown that the presence of small breakwaters not always generate increments on the reflection coefficients, but on the contrary case they contribute to the reflection of the waves decreasing, which is due to the interference of energy that exists between the inclined beach and the structure. To validate the approximate analytical solution, we present a comparison against analytical solutions reported in the specialized literature, obtained with the aid of linear long wave theory, and a numerical solution, all the solutions adjust properly. Results of this study are expected to be used by coastal engineers for preliminary feasibility and desk design of submerged cycloidal breakwaters.  相似文献   

2.
师晋生 《力学季刊》2006,27(4):693-698
对高粘度液体在等温正弦形波纹壁面上的自由降落与蒸发建立了摄动分析模型。得到了流动的分析解和蒸发传热的数值解。考察了壁面波纹的波幅和波数、液膜表面张力及贝克利数对流动与传热的影响,结果表明,加大波纹的波幅、适当选择波数、减小贝克利数可增强传热,而表面张力对蒸发传热的影响较小。  相似文献   

3.
The response of a semi-infinite compressible fluid to a step-wise change in temperature of its boundary is investigated analytically and numerically. Numerical results of the boundary layer structure are compared with Clarke’s analytical solution for a gas with thermal conductivity proportional to temperature. To avoid unwanted numerical dissipation in the numerical analysis, the space-time conservation element and solution element (CESE) method has been adopted to solve the unsteady 1-D Navier-Stokes equations. Good agreement between analytical and numerical results has been found for the development of the thermal boundary layer on a long time scale. Weak shock waves and expansion waves induced by the thermal boundary layer due to its compressibility, are observed in the numerical simulation. Finally, the numerical method has been applied to the reflection of a non-linear expansion wave and to a shock wave from an isothermal wall, thereby illustrating the effect of the boundary layer on the external flow field.  相似文献   

4.
A two-dimensional unsteady hydroelastic problem of interaction between surface waves and a moving vertical wall fixed on springs is studied. An analytical solution of the problem is constructed using a linear approximation, and a numerical solution within the framework of a nonlinear model of a potential fluid flow is found by a complex boundary element method. By means of analysis of the linear and nonlinear solutions, it is found that the linear solution can be used to predict some important characteristics of the wall motion and the fluid flow in the case of moderate wave amplitudes.  相似文献   

5.
The systematic development of the theory of shock reflection from a solid wall started in [1]. Regular reflection and a three-shock configuration originating in Mach reflection were considered there under the assumption of homogeneity of the domains between the discontinuities and, therefore, of rectilinearity of these latter. The difficulties of the theoretical study include the essential nonlinearity of the process as well as the instability of the tangential discontinuity originating during Mach reflection. Analytic solutions of the problem in a linear formulation are known for a small wedge angle or a weak wave (see [2–4], for example). The solution in a nonlinear formulation has been carried out numerically in [5, 6] for arbitrary wedge angles and wave intensities. Since the wave was nonstationary, the internal flow configuration is difficult to clarify by means of the constant pressure and density curves presented. A formulation of the problem for the complete system of gasdynamics equations in self-similar variables is given in [7] and a method of solution is proposed but no results are presented. Difficulties with the instability of the contact discontinuity are noted. The problem formulation in this paper is analogous to that proposed in [7]. However, a method of straight-through computation without extraction of the compression shocks in the flow field is selected to compute the discontinuous flows. The shocks and contact discontinuities in such a case are domains with abrupt changes in the gasdynamics parameters. The computations were carried out for a broad range of interaction angles and shock intensities. The results obtained are in good agreement with the analytical solutions and experimental results. Information about the additional rise in reflection pressure after the Mach foot has been obtained during the solution.  相似文献   

6.
生物芯片微通道周期性电渗流特性   总被引:5,自引:1,他引:4  
吴健康  王贤明 《力学学报》2006,38(3):309-315
以双电层的Poisson-Boltzmann方程和黏性不可压缩流体运动的Navier-Stokes方程为 基础,提出二维均匀微通道周期电渗流的解析解. 分析结果表明,周期电渗流速度大 小不但与双电层特性和外电场有关, 而且与流动雷诺数(Re = \omega h^2/\nu )密切相关. 随雷诺数增加,双电层滑移速度下降. 当离开固壁距离增加时,双电层以外区域流动速度快 速衰减,速度滞后相位角明显增加. 研究发现在微通道有波浪状速度剖面. 给出在低雷 诺数时的周期电渗流渐近解,它的速度振幅与定常电渗流速度相同,并具有柱栓式速度分布 形态. 还得到在微通道宽对双电层厚的比值(\kappa h)很小时,Debye-H\"{u}ckel近似 的周期电渗流解, 并与解析解进行分析比较 微通道,双电层,周期电渗流,雷诺数  相似文献   

7.
管道超声纵向导波裂纹检测数值模拟   总被引:11,自引:0,他引:11  
简述了近年来超声导波技术的发展现状及其检测原理,并用有限元程序ANSYS对管道超声纵向导波裂纹检测进行了数值模拟。管道模型中,删除单元模拟管道周向裂纹,通过对管道一端端部周向各节点施加轴向瞬时位移载荷模拟纵向入射应力波,同端接收反射应力波,根据裂纹纵波回波信号到达时间和反射系数能较为精确地判断裂纹位置、周向开口裂纹长度、管壁减薄程度及裂纹截面积,但反射系数对管道轴向裂纹宽度不十分敏感。数值模拟结果与前人实验结果及理论计算结果吻合较好。  相似文献   

8.
The numerical analysis of ‘Mach reflection’, which is the reflection of an obliquely incident solitary wave by a vertical wall, is presented. For the mathematical model of the analysis, the two-dimensional Boussinesq equation is used. In order to solve the equation in space, the finite element method based on the linear triangular element and the conventional Galerkin method is applied. The combination of explicit and semi-implicit schemes is employed for the time integration. Moreover, one of the treatments for the open boundary condition, in which the analytical solution of the linearized Boussinesq equation in the outside domain is linked to the discrete values of velocity and water elevation in the inside domain, is applied for the modeling of the Mach reflection problem. © 1998 John Wiley & Sons, Ltd.  相似文献   

9.
Boussinesq models describe the phase‐resolved hydrodynamics of unbroken waves and wave‐induced currents in shallow coastal waters. Many enhanced versions of the Boussinesq equations are available in the literature, aiming to improve the representation of linear dispersion and non‐linearity. This paper describes the numerical solution of the extended Boussinesq equations derived by Madsen and Sørensen (Coastal Eng. 1992; 15 :371–388) on Cartesian cut‐cell grids, the aim being to model non‐linear wave interaction with coastal structures. An explicit second‐order MUSCL‐Hancock Godunov‐type finite volume scheme is used to solve the non‐linear and weakly dispersive Boussinesq‐type equations. Interface fluxes are evaluated using an HLLC approximate Riemann solver. A ghost‐cell immersed boundary method is used to update flow information in the smallest cut cells and overcome the time step restriction that would otherwise apply. The model is validated for solitary wave reflection from a vertical wall, diffraction of a solitary wave by a truncated barrier, and solitary wave scattering and diffraction from a vertical circular cylinder. In all cases, the model gives satisfactory predictions in comparison with the published analytical solutions and experimental measurements. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
The present article represents an analysis of reflection of P-wave and SV-wave on the boundary of an isotropic and homogeneous generalized thermoelastic half-space when the boundary is stress-free as well as isothermal. The modulus of elasticity is taken as a linear function of reference temperature. The basic governing equations are applied under four theories of the generalized thermoelasticity: Lord-Shulman (L-S) theory with one relaxation time, Green-Naghdi (G-N) theory without energy dissipation and Tzou theory with dual-phase-lag (DPL), as well as the coupled thermoelasticity (CTE) theory. It is shown that there exist three plane waves, namely, a thermal wave, a P-wave and an SV-wave. The reflection from an isothermal stress-free surface is studied to obtain the reflection amplitude ratios of the reflected waves for the incidence of P- and SV-waves. The amplitude ratios variations with the angle of incident are shown graphically. Also the effects of reference temperature of the modulus of elasticity and dual-phase lags on the reflection amplitude ratios are discussed numerically.  相似文献   

11.
In this work, a hybrid numerical approach to predict the vibrational responses of planar structures excited by a turbulent boundary layer is presented. The approach combines an uncorrelated wall plane wave technique with the finite element method. The wall pressure field induced by a turbulent boundary layer is obtained as a set of uncorrelated wall pressure plane waves. The amplitude of these plane waves are determined from the cross spectrum density function of the wall pressure field given either by empirical models from literature or from experimental data. The response of the planar structure subject to a turbulent boundary layer excitation is then obtained from an ensemble average of the different realizations. The numerical technique is computationally efficient as it rapidly converges using a small number of realizations. To demonstrate the method, the vibrational responses of two panels with simply supported or clamped boundary conditions and excited by a turbulent flow are considered. In the case study comprising a plate with simply supported boundary conditions, an analytical solution is employed for verification of the method. For both cases studies, numerical results from the hybrid approach are compared with experimental data measured in two different anechoic wind tunnels.  相似文献   

12.
An analytical solution of the mild-slope wave equation is derived to describe long wave propagating over the idealized dredge excavation pit. The pit is assumed to be axisymmetrical and composed of a flat bottom and a convex slope. The convex slope is expressed by a simple power function. The problem is solved in the polar coordination system by the separation of variables. By the obtained solution, the characteristics of the wave refraction and reflection over the dredge excavation pit are discussed. The results show that wave amplitude is attenuated within and in the lee side of the pit and amplified at the rear flank of the pit due to wave refraction. The effects of the incident wave length and the shape of the pit on wave refraction are also discussed.  相似文献   

13.
This study mathematically formulates the fluid field of a water‐wave interaction with a porous structure as a two‐dimensional, non‐linear boundary value problem (bvp) in terms of a generalized velocity potential. The non‐linear bvp is reformulated into an infinite set of linear bvps of ascending order by Stokes perturbation technique, with wave steepness as the perturbation parameter. Only the first‐ and second‐order linear bvps are retained in this study. Each linear bvp is transformed into a boundary integral equation. In addition, the boundary element method (BEM) with linear elements is developed and applied to solve the first‐ and second‐order integral equations. The first‐ and second‐order wave profiles, reflection and transmission coefficients, and the amplitude ratio of the second‐order components are computed as well. The numerical results correlate well with previous analytical and experimental results. Numerical results demonstrate that the second‐order component can be neglected for a deep water‐wave and may become significant for an intermediate depth wave. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

14.
徐明瑜 《力学学报》1991,23(1):0-45
Y.Miyamoto等人根据小肠的生理和解剖特点,忽略小肠的固有运动对药物分布与吸收的影响,提出了肠内药物分布与吸收的二维层流、可渗壁多孔圆管模型。他们应用数值方法进行了计算。本文给出了包括灭活作用在内的上述模型的稳态解析解。所得结果与他们的数值解是一致的。解析解揭示了模型中各生理参数之间的相互关系,刻划了药物和营养物通过肠壁吸收规律,为在体实验测定肠壁对药物和营养物的渗透和反射系数提供了理论分析基础。同时从理论上证明了一些极为重要的结论。  相似文献   

15.
In this study, the transient response of an elastic strip subjected to dynamic in-plane loadings on the surface is investigated in detail. One of the objectives of this study is to develop an effective analytical method for determining transient solutions in a strip. By applying Laplace transform, the analytical solution in the transformed domain is derived and expressed in matrix form. The solution is then decomposed into infinite wave groups in which the multiple reflected waves with the same reflection are involved. Each multi-reflected wave can be identified by a coding method and be verified by the theory of generalized ray. The inverse transform is performed by using the well-known Cagniard method. The transient solutions in time domain for stresses and displacements are expressed in a closed form and are discussed in detail by an example. The experimental results show that the early time transient responses of displacements on the surface agree very well with the numerical calculations based on the theoretical solutions.  相似文献   

16.
A two-dimensional elasticity analysis for steady-state axisymmetric dynamic response of an arbitrarily thick elastic homogeneous hollow cylinder of infinite length, which is imperfectly bonded to the surrounding fluid-saturated permeable formation, subject to an axially moving ring load, is presented. The problem solution is derived by using Biot’s dynamic theory of poroelasticity in conjunction with double Fourier transformation with respect to time (frequency) and axial coordinate (axial wave number). The analytical results are illustrated with numerical examples in which a concrete tunnel lining of uniform wall thickness is imperfectly bonded to a surrounding water-saturated poroelastic formation of soft/stiff frame characteristic. Numerical solutions for the radial shell mid-plane and formation displacements are calculated by analytical (numerical) inversion of the Fourier transformation with respect to the frequency (axial wave number). Primary attention is focused on the influence of bonding condition at the liner/soil interface, formation material type, and load velocity on the system’s dynamic response. Limiting cases are considered and good agreements with the solutions available in the literature are obtained.  相似文献   

17.
Spherically symmetric finite amplitude wave propagation in a prestressed compressible hyperelastic spherical shell is considered. The prestress results from quasi-static application of internal pressure and a numerical solution for this elastostatic problem is obtained first. Dynamic change of the internal pressure results in the propagation of a spherically symmetric wave. A Godunov type finite difference scheme is proposed for the solution of the wave propagation problem and numerical results, which are valid until the first reflection, are presented for a particular isotropic strain energy function and for the special cases of sudden removal and sudden increase of the internal pressure.  相似文献   

18.
In two-dimensional supersonic gasdynamics, one of the classical steady-state problems, which include shock waves and other discontinuities, is the problem concerning the oblique reflection of a shock wave from a plane wall. It is well known [1–3] that two types of reflection are possible: regular and Mach. The problem concerning the regular reflection of a magnetohydrodynamic shock wave from an infinitely conducting plane wall is considered here within the scope of ideal magnetohydrodynamics [4]. It is supposed that the magnetic field, normal to the wall, is not equal to zero. The solution of the problem is constructed for incident waves of different types (fast and slow). It is found that, depending on the initial data, the solution can have a qualitatively different nature. In contrast from gasdynamics, the incident wave is reflected in the form of two waves, which can be centered rarefaction waves. A similar problem for the special case of the magnetic field parallel to the flow was considered earlier in [5, 6]. The normal component of the magnetic field at the wall was equated to zero, the solution was constructed only for the case of incidence of a fast shock wave, and the flow pattern is similar in form to that of gasdynamics. The solution of the problem concerning the reflection of a shock wave constructed in this paper is necessary for the interpretation of experiments in shock tubes [7–10].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 102–109, May–June, 1977.The author thanks A. A. Barmin, A. G. Kulikovskii, and G. A. Lyubimov for useful discussion of the results obtained.  相似文献   

19.
The reflection of elastic waves at the boundary of micropolar half-space with the viscoelastic support is studied in this paper. The spring-dashpot model is used to model the viscoelastic support. The boundary condition includes the force stress, couple stress, the displacements and the micro-rotation and the contribution from the spring and the dashpot on them. The amplitude ratios and phase shifts of reflection waves with respect to the incident wave are obtained from the visco-elastic boundary conditions. Further, the energy flux ratios of the reflection waves to the incident wave are estimated and the energy flux conservation with consideration of the energy dissipation of visco-elastic boundary is used to validate the numerical results. Based on the numerical results, the influences of spring and dashpot are studied respectively. It is found that the elastically supported boundary and the viscously supported boundary have evident different influences on the amplitude ratio and the phase shift. The causes resulting in these deviations are related with the instantaneous elasticity of elastic boundary and the time-delay effects of viscous boundary.  相似文献   

20.
Bogatko  V. I.  Kolton  G. A. 《Fluid Dynamics》1974,9(5):722-727
The problem of irregular reflection of a strong shock wave from a rigid wall has been studied [1–3] mainly within the framework of the linear theory. It has been found that near the front of a shock wave there exist a region of large gradients of gasdynamic parameters in which the linear theory is no longer valid [4]. In the present paper we consider the nonlinear problem of Mach reflection when there is interaction between a shock wave of high intensity and a thin wedge. The solution of the problem is constructed on the assumption that the ratio of densities along the front of the impinging shock wave is small [5, 6].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 55–61, September–October, 1974.In conclusion, the authors wish to express their gratitude to A. A. Grib for his interest in the subject and to L. A. Rumyantsev for his help in carrying out the calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号