首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesis of an analogue of the C-cluster of C. hydrogenoformans carbon monoxide dehydrogenase requires formation of a planar Ni(II) site and attachment of an exo iron atom in the core unit NiFe(4)S(5). The first objective has been achieved by two reactions: (i) displacement of Ph(3)P or Bu(t)()NC at tetrahedral Ni(II) sites of cubane-type [NiFe(3)S(4)](+) clusters with chelating diphosphines, and (ii) metal atom incorporation into a cuboidal [Fe(3)S(4)](0) cluster with a M(0) reactant in the presence of bis(1,2-dimethylphosphino)ethane (dmpe). The isolated product clusters [(dmpe)MFe(3)S(4)(LS(3))](2-) (M = Ni(II) (9), Pd(II) (12), Pt(II) (13); LS(3) = 1,3,5-tris((4,6-dimethyl-3-mercaptophenyl)thio)-2,4,6-tris(p-tolylthio)benzene(3-)) contain the cores [MFe(3)(mu(2)-S)(mu(3)-S)(3)](+) having planar M(II)P(2)S(2) sites and variable nonbonding M...S distances of 2.6-3.4 A. Reaction (i) involves a tetrahedral --> planar Ni(II) structural change between isomeric cubane and cubanoid [NiFe(3)S(4)](+) cores. Based on the magnetic properties of 12 and earlier considerations, the S = (5)/(2) ground state of the cubanoid cluster arises from the [Fe(3)S(4)](-) fragment, whereas the S = (3)/(2) ground state of the cubane cluster is a consequence of antiferromagnetic coupling between the spins of Ni(2+) (S = 1) and [Fe(3)S(4)](-). Other substitution reactions of [NiFe(3)S(4)](+) clusters and 1:3 site-differentiated [Fe(4)S(4)](2+) clusters are described, as are the structures of 12, 13, [(Me(3)P)NiFe(3)S(4)(LS(3))](2-), and [Fe(4)S(4)(LS(3))L'](2-) (L' = Me(2)NC(2)H(4)S(-), Ph(2)P(O)C(2)H(4)S(-)). This work significantly expands our initial report of cluster 9 (Panda et al. J. Am. Chem. Soc. 2004, 126, 6448-6459) and further demonstrates that a planar M(II) site can be stabilized within a cubanoid [NiFe(3)S(4)](+) core.  相似文献   

2.
Sun J  Tessier C  Holm RH 《Inorganic chemistry》2007,46(7):2691-2699
Substitution reactions at the nickel site of the cubane-type cluster [(Ph3P)NiFe3S4(LS3)]2- (2) have been investigated in the course of a synthetic approach to the C-clusters of CODH. Reaction of 2 with RS- or toluene-3,4-dithiolate affords [(RS)NiFe3S4(LS3)]3- (R = Et (5), H (6)) or [(tdt)NiFe3S4(LS3)]3- (7), demonstrating that anionic sulfur ligands can be bound at the NiII site. Clusters 5 and 6 contain tetrahedral Ni(micro3-S)3(SR) sites. Cluster 7 is of particular interest because it includes a cubanoid NiFe3(micro2-S)(micro3-S)3 core and an approximately planar Ni(tdt)(micro3-S)2 unit. The cubanoid structure is found in all C-clusters, and an NiS4-type unit has been reported in C. hydrogenoformans CODH. Clusters 5/6 are formulated to contain the core [NiFe3S4]1+ identical with Ni2+ (S = 1) + [Fe3S4]1- (S = 5/2) and 7 the core [NiFe3S4]2+ identical with Ni2+ (S = 0) + [Fe3S4]0 (S = 2) on the basis of structure, 57Fe isomer shifts, and 1H NMR isotropic shifts. Also reported are [(EtS)CuFe3S4(LS3)]3- (9) and [Fe4S4(LS3)(tdt)]3- (11). The structures of 5-7, 9, and 11 are presented. Cluster 11, with a five-coordinate Fe(tdt)(micro3-S)3 site, provides a clear structural contrast with 7, which is currently the closest approach to a C-cluster but lacks the exo iron atom found in the NiFe4S4,5 cores of the native clusters. (CODH = carbon monoxide dehydrogenase, LS3 = 1,3,5-tris((4,6-dimethyl-3-mercaptophenyl)thio)-2,4,6-tris(p-tolylthio)benzene(3-), tdt = toluene-3,4-dithiolate).  相似文献   

3.
The construction of a synthetic analogue of the A-cluster of carbon monoxide dehydrogenase/acetylcoenzyme synthase, the site of acetylcoenzyme A formation, requires as a final step the formation of an unsupported [Fe(4)S(4)]-(mu(2)-SR)-Ni(II) bridge to a preformed cluster. Our previous results (Rao, P. V.; Bhaduri, S.; Jiang, J.; Holm, R. H. Inorg. Chem. 2004, 43, 5833) and the work of others have addressed synthesis of dinuclear complexes relevant to the A-cluster. This investigation concentrates on reactions pertinent to bridge formation by examining systems containing dinuclear and mononuclear Ni(II) complexes and the 3:1 site-differentiated clusters [Fe(4)S(4)(LS(3))L'](2-) (L' = TfO(-) (14), SEt (15)). The system 14/[{Ni(L(O)-S(2)N(2))}M(SCH(2)CH(2)PPh(2))](+) results in cleavage of the dinuclear complex and formation of [{Ni(L(O)-S(2)N(2))}Fe(4)S(4)(LS(3))]- (18), in which the Ni(II) complex binds at the unique cluster site with formation of a Ni(mu(2)-SR)(2)Fe bridge rhomb. Cluster 18 and the related species [{Ni(phma)}Fe(4)S(4)(LS(3))](3)- (19) are obtainable by direct reaction of the corresponding cis-planar Ni(II)-S(2)N(2) complexes with 14. The mononuclear complexes [M(pdmt)(SEt)]- (M = Ni(II), Pd(II)) with 14 in acetonitrile or Me(2)SO solution react by thiolate transfer to give 15 and [M(2)(pdmt)(2)]. However, in dichloromethane the Ni(II) reaction product is interpreted as [{Ni(pdmt)(mu(2)-SEt)}Fe(4)S(4)(LS(3))](2-) (20). Reaction of Et(3)NH(+) and 15 affords the double cubane [{Fe(4)S(4)(LS(3))}(2)(mu(2)-SEt)](3-) (21). Cluster 18 contains two mutually supportive Fe-(mu(2)-SR)-Ni(II) bridges, 19 exhibits one strong and one weaker bridge, 20 has one unsupported bridge (inferred from the (1)H NMR spectrum), and 21 has one unsupported Fe-(mu(2)-SR)-Fe bridge. Bridges in 18, 19, and 21 were established by X-ray structures. This work demonstrates that a bridge of the type found in the enzyme A-clusters is achievable by synthesis and implies that more stable, unsupported single thiolate bridges may require reinforcement by an additional covalent linkage between the Fe(4)S(4) and nickel-containing components. (LS(3) = 1,3,5-tris((4,6-dimethyl-3-mercaptophenyl)thio)-2,4,6-tris(p-tolylthio)benzene(3-); L(O)-S(2)N(2) = N,N'-diethyl-3,7-diazanonane-1,9-dithiolate(2-); pdmt = pyridine-2,6-methanedithiolate(2-); phma = N,N'-1,2-phenylenebis(2-acetylthio)acetamidate(4-); TfO = triflate.).  相似文献   

4.
Reactions of a dirhenium tetra(sulfido) complex [PPh(4)](2)[ReS(L)(mu-S)(2)ReS(L)] (L = S(2)C(2)(SiMe(3))(2)) with a series of group 8-11 metal complexes in MeCN at room temperature afforded either the cubane-type clusters [M(2)(ReL)(2)(mu(3)-S)(4)] (M = CpRu (2), PtMe(3), Cu(PPh(3)) (4); Cp = eta(5)-C(5)Me(5)) or the incomplete cubane-type clusters [M(ReL)(2)(mu(3)-S)(mu(2)-S)(3)] (M = (eta(6)-C(6)HMe(5))Ru (5), CpRh (6), CpIr (7)), depending on the nature of the metal complexes added. It has also been disclosed that the latter incomplete cubane-type clusters can serve as the good precursors to the trimetallic cubane-type clusters still poorly precedented. Thus, treatment of 5-7 with a range of metal complexes in THF at room temperature resulted in the formation of novel trimetallic cubane-type clusters, including the neutral clusters [[(eta(6)-C(6)HMe(5))Ru][W(CO)(3)](ReL)(2)(mu(3)-S)(4)], [(CpM)[W(CO)(3)](ReL)(2)(mu(3)-S)(4)] (M = Rh, Ir), [(Cp*Ir)[Mo(CO)(3)](ReL)(2)(mu(3)-S)(4)], [[(eta(6)-C(6)HMe(5))Ru][Pd(PPh(3))](ReL)(2)(mu(3)-S)(4)], and [(Cp*Ir)[Pd(PPh(3))](ReL)(2)(mu(3)-S)(4)] (13) along with the cationic clusters [(Cp*Ir)(CpRu)(ReL)(2)(mu(3)-S)(4)][PF(6)] (14) and [(Cp*Ir)[Rh(cod)](ReL)(2)(mu(3)-S)(4)][PF(6)] (cod = 1,5-cyclooctadiene). The X-ray analyses have been carried out for 2, 4, 7, 13, and the SbF(6) analogue of 14 (14') to confirm their bimetallic cubane-type, bimetallic incomplete cubane-type, or trimetallic cubane-type structures. Fluxional behavior of the incomplete cubane-type and trimetallic cubane-type clusters in solutions has been demonstrated by the variable-temperature (1)H NMR studies, which is ascribable to both the metal-metal bond migration in the cluster cores and the pseudorotation of the dithiolene ligand bonded to the square pyramidal Re centers, where the temperatures at which these processes proceed have been found to depend upon the nature of the metal centers included in the cluster cores.  相似文献   

5.
In earlier work, de novo designed peptides with a helix-loop-helix motif and 63 residues have been synthesized as potential scaffolds for stabilization of the [Ni(II)-X-Fe(4)S(4)] bridged assembly that is the spectroscopically deduced structure of the A-Cluster in clostridial carbon monoxide dehydrogenase. The 63mers contain a consensus tricysteinyl ferredoxin domain in the loop for binding an Fe(4)S(4) cluster and Cys and His residues proximate to the loop for binding Ni(II), with one Cys residue designed as the bridge X. The metallopeptides HC(4)H(2)-[Fe(4)S(4)]-Ni and HC(5)H-[Fe(4)S(4)]-M, containing three His and one Cys residue for Ni(II) coordination and two His and two Cys residues for binding M = Ni(II) and Co(II), have been examined by Fe-, Ni-, and Co-K edge spectroscopy and EXAFS. All peptides bind an [Fe(4)S(4)](2+) cubane-type cluster. Interpretation of the Ni and Co data is complicated by the presence of a minority population of six-coordinate species with low Z ligands, designated for simplicity as [M(OH(2))(6)](2+). Best fits of the data were obtained with ca. 20% [M(OH(2))(6)](2+) and ca. 80% M(II) with mixed N/S coordination. The collective XAS results for HC(4)H(2)-[Fe(4)S(4)]-Ni and HC(5)H-[Fe(4)S(4)]-M demonstrate the presence of an Fe(4)S(4) cluster and support the existence of the distorted square-planar coordination units [Ni(II)(S.Cys)(N.His)(3)] and [Ni(II)(S.Cys)(2)(N.His)(2)] in the HC(4)H(2) and HC(5)H metallopeptides, respectively. In the HC(5)H metallopeptide, tetrahedral [Co(II)(S.Cys)(2)(N.His)(2)] is present. We conclude that the designed scaffolded binding sites, including Ni-(mu(2)-S.Cys)-Fe bridges, have been achieved. This is the first XAS study of a de novo designed metallopeptide intended to stabilize a bridged biological assembly, and one of a few XAS analyses of metal derivatives of designed peptides. The scaffolding concept should be extendable to other bridged metal assemblies.  相似文献   

6.
X-ray structural data for the cubane-type clusters [Mo3CuS4(dmpe)3Cl4](+) and Mo3NiS4(dmpe)3Cl4 (dmpe = 1,2-bis(dimethylphosphino)ethane) with 16 metal electrons have been compared with optimized structural parameters calculated using "ab initio" methodologies. Compound Mo3NiS4(dmpe)3Cl4 crystallizes in the cubic noncentrosymmetric space group P213 with a Mo-Ni distance of 2.647 Angstrom, that is 0.2 Angstrom shorter than the Mo-Cu bond length in the isoelectronic copper cluster. The best agreement between theory and experiments has been obtained using the B3P86 method. In order to validate the B3P86 results, accurate infrared and Raman spectra have been acquired and the vibrational modes associated to the cubane-type Mo3M'S4 (M' = Cu or Ni) unit have been assigned theoretically. The electronic changes taking place when incorporating the M' into the Mo3S4 unit have been analyzed from a theoretical and experimental perspective. The bond dissociation energies between M'-Cl and Mo3S4 fragments show that formation of [Mo3CuS4(dmpe)3Cl4](+) is 135 kcal/mol energetically less favorable than the Ni incorporation. The more robust nature of the Mo3NiS4 fragment has been confirmed by mass spectrometry. The X-ray photoelectron spectroscopy (XPS) spectra of the trimetallic and tetrametallic complexes have been measured and the obtained binding energies compared with the computed electronic populations based on topological approaches of the electron localization function (ELF). The energies and shapes of the Cu 2p and Ni 2p lines indicate formal oxidation states of Cu(I) and Ni(II). However, the reductive addition of nickel into [Mo3S4(dmpe)3Cl3](+) causes a small decrease in the Mo 3d binding energies. This fact prevents an unambiguous assignment of an oxidation state in a conventional way, a circumstance that has been analyzed through the covariance of the electronic populations associated to the C(M') core and V(Mo3Ni) and V(S(2)') valence basins where Mo3NiS4 is a particularly electronically delocalized chemical entity.  相似文献   

7.
Hauser C  Bill E  Holm RH 《Inorganic chemistry》2002,41(6):1615-1624
A new series of cubane-type [VFe(3)S(4)](z)() clusters (z = 1+, 2+, 3+) has been prepared as possible precursor species for clusters related to those present in vanadium-containing nitrogenase. Treatment of [(HBpz(3))VFe(3)S(4)Cl(3)](2)(-) (2, z = 2+), protected from further reaction at the vanadium site by the tris(pyrazolyl)hydroborate ligand, with ferrocenium ion affords the oxidized cluster [(HBpz(3))VFe(3)S(4)Cl(3)](1)(-) (3, z = 3+). Reaction of 2 with Et(3)P results in chloride substitution to give [(HBpz(3))VFe(3)S(4)(PEt(3))(3)](1+) (4, z = 2+). Reaction of 4 with cobaltocene reduced the cluster with formation of the edge-bridged double-cubane [(HBpz(3))(2)V(2)Fe(6)S(8)(PEt(3))(4)] (5, z = 1+, 1+), which with excess chloride underwent ligand substitution to afford [(HBpz(3))(2)V(2)Fe(6)S(8)Cl(4)](4)(-) (6, z = 1+, 1+). X-ray structures of (Me(4)N)[3], [4](PF(6)), 5, and (Et(4)N)(4)[6] x 2MeCN are described. Cluster 5 is isostructural with previously reported [(Cl(4)cat)(2)(Et(3)P)(2)Mo(2)Fe(6)S(8)(PEt(3))(4)] and contains two VFe(3)S(4) cubanes connected across edges by a Fe(2)S(2) rhomb in which the bridging Fe-S distances are shorter than intracubane Fe-S distances. M?ssbauer (2-5), magnetic (2-5), and EPR (2, 4) data are reported and demonstrate an S = 3/2 ground state for 2 and 4 and a diamagnetic ground state for 3. Analysis of (57)Fe isomer shifts based on an empirical correlation between shift and oxidation state and appropriate reference shifts results in two conclusions. (i) The oxidation 2 --> 3 + e(-) results in a change in electron density localized largely or completely on the Fe(3) subcluster and associated sulfur atoms. (ii) The most appropriate charge distributions are [V(3+)Fe(3+)Fe(2+)(2)S(4)](2+) (Fe(2.33+)) for 1, 2, and 4 and [V(3+)Fe(3+)(2)Fe(2+)S(4)](3+) (Fe(2.67+)) for 3 and [V(2)Fe(6)S(8)(SEt)(9)](3+). Conclusion i applies to every MFe(3)S(4) cubane-type cluster thus far examined in different redox states at parity of cluster ligation. The formalistic charge distributions are regarded as the best current approximations to electron distributions in these delocalized species. The isomer shifts require that iron atoms are mixed-valence in each cluster.  相似文献   

8.
To probe how H-bonding effects the redox potential changes in Fe-S proteins, we produced and studied a series of gaseous cubane-type analogue complexes, [Fe(4)S(4)(SEt)(3)(SC(n)H(2n+1))](2-) and [Fe(4)S(4)(SEt)(3)(SC(n)H(2n)OH)](2-) (n = 4, 6, 11; Et = C(2)H(5)). Intrinsic redox potentials for the [Fe(4)S(4)](2+/3+) redox couple involved in these complexes were measured by photoelectron spectroscopy. The oxidation energies from [Fe(4)S(4)(SEt)(3)(SC(n)H(2n)OH)](2-) to [Fe(4)S(4)(SEt)(3)(SC(n)H(2n)OH)](-) were determined directly from the photoelectron spectra to be approximately 130 meV higher than those for the corresponding [Fe(4)S(4)(SEt)(3)(SC(n)H(2n+1))](2-) systems, because of the OH...S hydrogen bond in the former. Preliminary Monte Carlo and density functional calculations showed that the H-bonding takes place between the -OH group and the S on the terminal ligand in [Fe(4)S(4)(SEt)(3)(SC(6)H(12)OH)](2-). The current data provide a direct experimental measure of a net H-bonding effect on the redox potential of [Fe(4)S(4)] clusters without the perturbation of other environmental effects.  相似文献   

9.
10.
The acetyl-CoA decarbonylase/synthase (ACDS) complex catalyzes the cleavage of acetyl-CoA in methanogens that metabolize acetate to CO(2) and CH(4), and also carries out acetyl-CoA synthesis during growth on one-carbon substrates. The ACDS complex contains five subunits, among which beta possesses an Ni-Fe-S active-site metal cluster, the A-cluster, at which reaction with acetyl-CoA takes place, generating an acetyl-enzyme species poised for C-C bond cleavage. We have used Ni and Fe K fluorescence XANES and EXAFS analyses to characterize these metals in the ACDS beta subunit, expressed as a C-terminally shortened form. Fe XANES and EXAFS confirmed the presence of an [Fe(4)S(4)] cluster, with typical Fe-S and Fe-Fe distances of 2.3 and 2.7 A respectively. An Fe:Ni ratio of approximately 2:1 was found by Kalphabeta fluorescence analysis, indicating 2 Ni per [Fe(4)S(4)]. Ni XANES simulations were consistent with two distinct Ni sites in cluster A, and the observed spectrum could be modeled as the sum of separate square planar and tetrahedral Ni sites. Treatment of the beta subunit with Ti(3+) citrate resulted in shifts to lower energy, implying significant reduction of the [Fe(4)S(4)] center, along with conversion of a smaller fraction of Ni(II) to Ni(I). Reaction with CO in the presence of Ti(3+) citrate generated a unique Ni XANES spectrum, while effects on the Fe-edge were not very different from the reaction with Ti(3+) alone. Ni EXAFS revealed an average Ni coordination of 2.5 S at 2.19 A and 1.5 N/O at 1.89 A. A distinct feature at approximately 2.95 A most likely results from Ni-Ni interaction. The methanogen beta subunit A-cluster is proposed to consist of an [Fe(4)S(4)] cluster bridged to an Ni-Ni center with one Ni in square planar geometry coordinated by 2 S + 2 N and the other approximately tetrahedral with 3 S + 1 N/O ligands. The electronic consequences of two distinct Ni geometries are discussed.  相似文献   

11.
12.
The symmetric d(5) trans-bis-alkynyl complexes [Mn(dmpe)(2)(C triple bond CSiR(3))(2)] (R = Me, 1 a; Et, 1 b; Ph, 1 c) (dmpe = 1,2-bis(dimethylphosphino)ethane) have been prepared by the reaction of [Mn(dmpe)(2)Br(2)] with two equivalents of the corresponding acetylide LiC triple bond CSiR(3). The reactions of species 1 with [Cp(2)Fe][PF(6)] yield the corresponding d(4) complexes [Mn(dmpe)(2)(C triple bond CSiR(3))(2)][PF(6)] (R = Me, 2 a; Et, 2 b; Ph, 2 c). These complexes react with NBu(4)F (TBAF) at -10 degrees C to give the desilylated parent acetylide compound [Mn(dmpe)(2)(C triple bond CH)(2)][PF(6)] (6), which is stable only in solution at below 0 degrees C. The asymmetrically substituted trans-bis-alkynyl complexes [Mn(dmpe)(2)(C triple bond CSiR(3))(C triple bond CH)][PF(6)] (R = Me, 7 a; Et, 7 b) related to 6 have been prepared by the reaction of the vinylidene compounds [Mn(dmpe)(2)(C triple bond CSiR(3))(C=CH(2))] (R = Me, 5 a; Et, 5 b) with two equivalents of [Cp(2)Fe][PF(6)] and one equivalent of quinuclidine. The conversion of [Mn(C(5)H(4)Me)(dmpe)I] with Me(3)SiC triple bond CSnMe(3) and dmpe afforded the trans-iodide-alkynyl d(5) complex [Mn(dmpe)(2)(C triple bond CSiMe(3))I] (9). Complex 9 proved to be unstable with regard to ligand disproportionation reactions and could therefore not be oxidized to a unique Mn(III) product, which prevented its further use in acetylide coupling reactions. Compounds 2 react at room temperature with one equivalent of TBAF to form the mixed-valent species [[Mn(dmpe)(2)(C triple bond CH)](2)(micro-C(4))][PF(6)] (11) by C-C coupling of [Mn(dmpe)(2)(C triple bond CH)(C triple bond C*)] radicals generated by deprotonation of 6. In a similar way, the mixed-valent complex [[Mn(dmpe)(2)(C triple bond CSiMe(3))](2)(micro-C(4))][PF(6)] [12](+) is obtained by the reaction of 7 a with one equivalent of DBU (1,8-diazabicyclo[5.4.0]undec-7-ene). The relatively long-lived radical intermediate [Mn(dmpe)(2)(C triple bond CH)(C triple bond C*)] could be trapped as the Mn(I) complex [Mn(dmpe)(2)(C triple bond CH)(triple bond C-CO(2))] (14) by addition of an excess of TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) to the reaction mixtures of species 2 and TBAF. The neutral dinuclear Mn(II)/Mn(II) compounds [[Mn(dmpe)(2)(C triple bond CR(3))](2)(micro-C(4))] (R = H, 11; R = SiMe(3), 12) are produced by the reduction of [11](+) and [12](+), respectively, with [FeCp(C(6)Me(6))]. [11](+) and [12](+) can also be oxidized with [Cp(2)Fe][PF(6)] to produce the dicationic Mn(III)/Mn(III) species [[Mn(dmpe)(2)(C triple bond CR(3))](2)(micro-C(4))][PF(6)](2) (R = H, [11](2+); R = SiMe(3), [12](2+)). Both redox processes are fully reversible. The dinuclear compounds have been characterized by NMR, IR, UV/Vis, and Raman spectroscopies, CV, and magnetic susceptibilities, as well as elemental analyses. X-ray diffraction studies have been performed on complexes 4 b, 7 b, 9, [12](+), [12](2+), and 14.  相似文献   

13.
Edge-bridged Mo-Fe-S double cubanes are versatile precursors for the synthesis of other clusters of the same nuclearity. Thus, the double cubane [(Tp)(2)Mo(2)Fe(6)S(8)(PEt(3))(4)] sustains terminal ligand substitution with retention of the Mo(2)Fe(6)(micro(3)-S)(6)(micro(4)-S)(2) core structure and rearrangement to the Mo(2)Fe(6)(micro(2)-S)(2)(micro(3)-S)(6)(micro(6)-S) topology of the nitrogenase P(N) cluster upon reaction with certain nucleophiles. Four distinct processes for the conversion of double cubanes to P(N)-type clusters are documented, affording the products [(Tp)(2)Mo(2)Fe(6)S(9)(SR)(2)](3)(-), [(Tp)(2)Mo(2)Fe(6)S(8)(OMe)(3)](3)(-), and [(Tp)(2)Mo(2)Fe(6)S(7)(OMe)(4)](2)(-). In the latter clusters, two methoxides are terminal ligands and one or two are micro(2)-bridging ligands. The reverse transformation of a P(N)-type cluster to an edge-bridged double cubane has been demonstrated by the reaction of [(Tp)(2)Mo(2)Fe(6)S(8)(OMe)(3)](3)(-) with Me(3)SiX to afford [(Tp)(2)Mo(2)Fe(6)S(8)X(4)](2)(-) (X = Cl(-), Br(-)). Edge-bridged double cubanes have been obtained in the oxidation states [Mo(2)Fe(6)S(8)](2+,3+,4+). The stable oxidation state of P(N)-type clusters is [Mo(2)Fe(6)S(9)](+). Structures of five double cubanes and four P(N)-type clusters are reported. The P(N)-type clusters are synthetic representations of the biologically unique topology of the native P(N) cluster. Best-fit superpositions of the native and synthetic cluster cores gives weighted rms deviations in atom positions of 0.20-0.38 A. This study and an earlier investigation (Zhang, Y.; Holm, R. H. J. Am. Chem. Soc. 2003, 125, 3910-3920) provide a comprehensive account of the synthesis of structural analogues of the native P(N) cluster and provide the basis for continuing investigation of the synthesis of weak-field Mo-Fe-S clusters related to nitrogenase. (Tp = tris(pyrazolyl)hydroborate(1-).)  相似文献   

14.
The structures of the P cluster and cofactor cluster of nitrogenase are well-defined crystallographically. They have been obtained only by biosynthesis; their chemical synthesis remains a challenge. Synthetic routes are sought to the P cluster in the P(N) state in which two cuboidal Fe(3)S(3) units are connected by a mu(6)-S atom and two Fe-(mu(2)-S(Cys))-Fe bridges. A reaction scheme affording a Mo(2)Fe(6)S(9) cluster in molecular form having the topology of the P(N) cluster has been devised. Reaction of the single cubane [(Tp)MoFe(3)S(4)Cl(3)](1)(-) with PEt(3) gives [(Tp)MoFe(3)S(4)(PEt(3))(3)](1+) (2), which upon reduction with BH(4)(-) affords the edge-bridged all-ferrous double cubane [(Tp)(2)Mo(2)Fe(6)S(8)(PEt(3))(4)] (4) (Tp = tris(pyrazolylhydroborate(1-)). Treatment of 4 with 3 equiv of HS(-) produces [(Tp)(2)Mo(2)Fe(6)S(9)(SH)(2)](3)(-) (7) as the Et(4)N(+) salt in 86% yield. The structure of 7 is built of two (Tp)MoFe(3)(mu(3)-S)(3) cuboidal fragments bridged by two mu(2)-S atoms and one mu(6)-S atom in an arrangement of idealized C(2) symmetry. The cluster undergoes three one-electron oxidation reactions and is oxidatively cleaved by p-tolylthiol to [(Tp)MoFe(3)S(4)(S-p-tol)(3)](2)(-) and by weak acids to [(Tp)MoFe(3)S(4)(SH)(3)](2-). The cluster core of 7 has the bridging pattern [Mo(2)Fe(6)(mu(2)-S)(2)(mu(3)-S)(6)(mu(6)-S)](1+) with the probable charge distribution [Mo(3+)(2)Fe(2+)(5)Fe(3+)S(9)](1+). Cluster 7 is a topological analogue of the P(N) cluster but differs in having two heteroatoms and two Fe-(mu(2)-S)-Fe instead of two Fe-(mu(2)-S(Cys))-Fe bridges. A best-fit superposition of the two cluster cores affords a weighted rms deviation in atom positions of 0.38 A. Cluster 7 is the first molecular topological analogue of the P(N) cluster. This structure had been prepared previously only as a fragment of complex high-nuclearity Mo-Fe-S clusters.  相似文献   

15.
Heterodimetallic cubane-type complexes coordinated to diphosphanes [Mo(3)CoS(4)(dmpe)(3)Cl(4)](+) ([1](+)) (dmpe=1,2-bis(dimethylphosphanyl)ethane), [Mo(3)CoS(4)(dmpe)(3)Cl(4)] (1) and [Mo(3)CoS(4)(dmpe)(3)Cl(3)(CO)] (2) with 14, 15 and 16 metal electrons, respectively, have been prepared from the [Mo(3)S(4)(dmpe)(3)Cl(3)](+) trinuclear precursor using [Co(2)(CO)(8)] or CoCl(2) as cobalt source. Cluster complexes [1](+) and 1 are easily interconverted chemically and electrochemically. The Co-Cl distance increases upon electron addition and substitution of the chlorine atom coordinated to cobalt with CO only takes place in presence of a reducing agent to give complex 2. Structural changes in the intermetallic distances agree with the entering electrons occupying an orbital which is basically Mo-Mo non-bonding and slightly Mo-Co bonding. Magnetic susceptibility measurements for [1](+) and 1 are consistent with the presence of two and one unpaired electrons, respectively and therefore with an "e" character for the HOMO orbital. Oxidation of 1 with TCNQ results in the formation of a charge transfer salt formulated as [1](+)[TCNQ](-) with alternate layers of paramagnetic cluster cations and also paramagnetic organic anions. There is no magnetic interaction between layers and the thermal variation of the magnetic susceptibility has been modelled as a S= 1/2 TCNQ antiferromagnetic chain plus a S=1 cluster monomer with zero field splitting.  相似文献   

16.
A convenient synthesis of (t)Bu(3)SiSH and (t)Bu(3)SiSNa(THF)(x)() led to the exploration of "(t)Bu(3)SiSMX" aggregation. The dimer, [((t)Bu(3)SiS)Fe](2)(mu-SSi(t)Bu(3))(2) (1(2)), was formed from [{(Me(3)Si)(2)N}Fe](2)(mu-N(SiMe(3))(2))(2) and the thiol, and its dissolution in THF generated ((t)Bu(3)SiS)(2)Fe(THF)(2) (1-(THF)(2)). Metathetical procedures with the thiolate yielded aggregate precursors [X(2)Fe](mu-SSi(t)Bu(3))(2)[FeX(THF)]Na(THF)(4) (3-X, X = Cl, Br) and cis-[(THF)IFe](2)(mu-SSi(t)Bu(3))(2) (4). Thermal desolvations of 3-Cl, 3-Br and 4 afforded molecular wheels [Fe(mu-X)(mu-SSi(t)Bu(3))](12)(C(6)H(6))(n) (5-FeX, X = Cl, Br) and the ellipse [Fe(mu-I)(mu-SSi(t)Bu(3))](14)(C(6)H(6))(n) (6-FeI). Related metathesis and desolvation sequences led to wheels [Co(mu-Cl)(mu-SSi(t)Bu(3))](12)(C(6)H(6))(n) (5-CoCl) and [Ni(mu-Br)(mu-SSi(t)Bu(3))](12)(C(6)H(6))(n) (5-NiBr). The nickel wheel disproportionated to give, in part, [((t)Bu(3)SiS)Ni](2)(mu-SSi(t)Bu(3))(2) (7), which was also synthesized via salt metathesis. X-ray structural studies of 1(2) revealed a roughly planar Fe(2)S(4) core, while 1-(THF)(2), 3-Br, and 4 possessed simple distorted tetrahedral and edge-shared tetrahedral structures. X-ray structural studies revealed 5-MX (MX = FeCl, FeBr, CoCl, NiBr) to be wheels based on edge-shared tetrahedra, but while the pseudo-D(6)(d) wheels of 5-FeCl, 5-CoCl, and 5-FeBr pack in a body-centered arrangement, those of pseudo-C(6)(v)() 5-NiBr exhibit hexagonal packing and two distinct trans-annular d(Br...Br). Variable-temperature magnetic susceptibility measurements were conducted on 5-FeCl, 5-CoCl, 5-FeBr, and 6-FeI, and the latter three are best construed as weakly antiferromagnetic, while 5-FeCl exhibited modest ferromagnetic coupling. Features suggesting molecular magnetism are most likely affiliated with phase changes at low temperatures.  相似文献   

17.
18.
The reactions of the (Et(4)N)(2)[(Cl(4)-cat)(MeCN)MoFe(3)S(4)Cl(3)] (I) cluster with Fe(pp)(2)Cl(2) (pp = depe (bis(1,2-diethylphosphino)ethane) or dmpe (bis(1,2-dimethylphosphino)ethane)) produced the [(Cl(4)-cat)MoFe(3)S(4)(pp)(2)Cl](2)(mu-pp) (pp = depe (III) or dmpe (V)) singly bridged double cubanes. The reactions of I with the same bidentate phosphine ligands in the presence of NaBPh(4) also produced III and the [(Cl(4)-cat)MoFe(3)S(4)(dmpe)(2)](2)(mu-S)(mu-dmpe) (VI) doubly bridged double cubane, respectively. The byproduct (BPh(4))[Fe(dmpe)(2)(MeCN)Cl] (VII) has been isolated from the reaction mixture and crystallographically characterized. The depe analogue of VI, [(Cl(4)-cat)MoFe(3)S(4)(depe)(2)](2)(mu-S)(mu-depe) (IV), has been successfully prepared from III in the presence of excess Li(2)S. Similar reactions with (Et(4)N)(2)[Fe(4)S(4)(SPh)(4)] (VIII) have resulted in the formation of the neutral Fe(4)S(4)(depe)(2)(SPh)(2) (IX) cluster. The chloride analogue of IX, Fe(4)S(4)(depe)(2)Cl(2) (XI), has been obtained by a reaction of IX with benzoyl chloride. The crystal and molecular structures of III, VI, VII, and XI have been determined by single-crystal X-ray crystallography. The electrochemical and spectroscopic properties, including the Mossbauer spectra of the new clusters, have been determined and analyzed.  相似文献   

19.
Reaction schemes have been developed that lead to clusters having the topology of the PN cluster of nitrogenase. The single cubane clusters [(Tp)MFe3S4Cl3]z (M = Mo, z = 1-; M = V, z = 2-) react with PEt3 to give [(Tp)MFe3S4(PEt3)3]1+, which are reduced to the neutral edge-bridged double cubanes [(Tp)2M2Fe6S8(PEt3)4] with highly reduced (2[MFe3S4]1+) cores. Reaction of these clusters in acetonitrile with (Et4N)(HS) results in the formation of [(Tp)2Mo2Fe6S9(SH)2]3- and [(Tp)2V2Fe6S9(SH)2]4-. X-ray structures of the Et4N+ salts reveal the bridging pattern M2Fe6(mu2-S)2(mu3-S)6(mu6-S) in which two cuboidal MFe3(mu3-S)3 units share the common bridge atom mu6-S and are externally bridged by two mu2-S atoms. The M sites possess trigonal octahedral, and the Fe sites, distorted tetrahedral coordination. Hydrosulfide ligands and sulfide atoms simulate terminal cysteinate ligation and mu2 bridges, respectively, in the protein-bound cluster Fe8S7(mu2-SCys)2(SCys)4. The synthetic clusters have the same bridging pattern as the PN cluster and approach congruency with it. These clusters are the first molecular topological analogues of a PN cluster. Like the latter, they are substantially reduced (majority of Fe(II)).  相似文献   

20.
The cluster [W(3)S(4)H(3)(dmpe)(3)](+) (1) (dmpe=1,2-bis(dimethylphosphino)ethane) reacts with HX (X=Cl, Br) to form the corresponding [W(3)S(4)X(3)(dmpe)(3)](+) (2) complexes, but no reaction is observed when 1 is treated with an excess of halide salts. Kinetic studies indicate that the hydride 1 reacts with HX in MeCN and MeCN-H(2)O mixtures to form 2 in three kinetically distinguishable steps. In the initial step, the W-H bonds are attacked by the acid to form an unstable dihydrogen species that releases H(2) and yields a coordinatively unsaturated intermediate. This intermediate adds a solvent molecule (second step) and then replaces the coordinated solvent with X(-) (third step). The kinetic results show that the first step is faster with HCl than with solvated H(+). This indicates that the rate of protonation of this metal hydride is determined not only by reorganization of the electron density at the M-H bonds but also by breakage of the H-X or H(+)-solvent bonds. It also indicates that the latter process can be more important in determining the rate of protonation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号