首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We construct and study the implications of some new non-local conserved currents that exist is a wide variety of massive integrable quantum field theories in 2 dimensions, including the sine-Gordon theory and its generalization to affine Toda theory. These non-local currents provide a non-perturbative formulation of the theories. The symmetry algebras correspond to the quantum affine Kac-Moody algebras. TheS-matrices are completely characterized by these symmetries. FormalS-matrices for the imaginary-coupling affine Toda theories are thereby derived. The application of theseS-matrices to perturbed coset conformal field theory is studied. Non-local charges generating the finite dimensional Quantum Group in the Liouville theory are briefly presented. The formalism based on non-local charges we describe provides an algernative to the quantum inverse scattering method for solving integrable quantum field theories in 2d.  相似文献   

2.
The recent construction and analysis of deformations of quantum field theories by warped convolutions is extended to a class of curved spacetimes. These spacetimes carry a family of wedge-like regions which share the essential causal properties of the Poincaré transforms of the Rindler wedge in Minkowski space. In the setting of deformed quantum field theories, they play the role of typical localization regions of quantum fields and observables. As a concrete example of such a procedure, the deformation of the free Dirac field is studied.  相似文献   

3.
We discuss some simple models related to quantum corrections of the MIT-bag in the framework of local field theories in two space-time dimensions. A recent result due to A. Chodos and A. Klein is generalized. We find that the corresponding quantum field theories become free or have an energy spectrum unbounded from below.  相似文献   

4.
It has been shown that ordinary (d−2)-dimensional quantum field theories are equivalent to corresponding quantum field theories defined on a (d+2)-dimensional superspace with two anticommuting variables. This dimensional reduction is a consequence of superrotation invariance in the superspace. In this letter we study general conformal transformations in the superspace and the properties of field theories which are invariant under such transformations. We show that the symmetries are dimensionally reduced.  相似文献   

5.
We extend the parametric representation of renormalizable non commutative quantum field theories to a class of theories which we call “covariant”, because their power counting is definitely more difficult to obtain.This class of theories is important since it includes gauge theories, which should be relevant for the quantum Hall effect.  相似文献   

6.
N D Hari Dass 《Pramana》1985,25(4):439-446
Lattice field theories are described as a way to regularize continuum quantum field theories. They are obtained by replacing ordinary space time by a lattice, space time derivatives by suitable differences and Minkowski by Euclidean space. The connection between a quantum field theory isd space dimension and classical statistical mechanics in (d+1) dimensions is brought outvia elementary examples. The problem of regaining the continuum limit and of handling nonabelian gauge theories are briefly discussed.  相似文献   

7.
We propose the quantum simulation of fermion and antifermion field modes interacting via a bosonic field mode, and present a possible implementation with two trapped ions. This quantum platform allows for the scalable add up of bosonic and fermionic modes, and represents an avenue towards quantum simulations of quantum field theories in perturbative and nonperturbative regimes.  相似文献   

8.
In this article we present a brief review of the conformal symmetry and the two-dimensional conformal quantum field theories. As concrete applications of the conformal theories to the critical phenomena in statistical systems, we calculate the value of central charge and the anomalous scale dimensions of the Z 2 symmetric quantum chain with boundary condition. The results are compatible with the prediction of the conformal field theories.  相似文献   

9.
Deformations of quantum field theories which preserve Poincaré covariance and localization in wedges are a novel tool in the analysis and construction of model theories. Here a general scenario for such deformations is discussed, and an infinite class of explicit examples is constructed on the Borchers-Uhlmann algebra underlying Wightman quantum field theory. These deformations exist independently of the space-time dimension, and contain the recently studied warped convolution deformation as a special case. In the special case of two-dimensional Minkowski space, they can be used to deform free field theories to integrable models with non-trivial S-matrix.  相似文献   

10.
We study general properties of certain Lorentz-invariant noncommutative quantum field theories proposed in the literature. We show that causality in those theories does not hold, in contrast to the canonical noncommutative field theory with the light-wedge causality condition. This is the consequence of the infinite nonlocality of the theory getting spread in all spacetime directions. We also show that the time-ordered perturbation theory arising from the Hamiltonian formulation of noncommutative quantum field theories remains inequivalent to the covariant perturbation theory with usual Feynman rules even after restoration of Lorentz symmetry.  相似文献   

11.
《Nuclear Physics B》1999,541(3):566-614
We present a general method for constructing perturbative quantum field theories with global symmetries. We start from a free non-interacting quantum field theory with given global symmetries and we determine all perturbative quantum deformations assuming the construction is not obstructed by anomalies. The method is established within the causal Bogoliubov-Shirkov-Epstein-Glaser approach to perturbative quantum field theory (which leads directly to a finite perturbative series and does not rely on an intermediate regularization). Our construction can be regarded as a direct implementation of Noether's method at the quantum level. We illustrate the method by constructing the pure Yang-Mills theory (where the relevant global symmetry is BRST symmetry), and the N = 1 supersymmetric model of Wess and Zumino. The whole construction is done before the so-called adiabatic limit is taken. Thus, all considerations regarding symmetry, unitarity and anomalies are well defined even for massless theories.  相似文献   

12.
Computations in renormalizable perturbative quantum field theories reveal mathematical structures which go way beyond the formal structure which is usually taken as underlying quantum field theory. We review these new structures and the role they can play in future developments.  相似文献   

13.
In this paper the quantum theory of ultralocal scalar fields is developed. Such fields are distinguished by the independent temporal development of the field at each spacial point. Although the classical theories fit into the canonical framework, this is not the case for the quantum theories (with the exception of the free field). Explicit operator constructions are given for the field and the Hamiltonian as well as several other operators, and the calculation of the truncated vacuum expectation values is reduced to an associated single degree of freedom calculation. It is shown that construction of the Hamiltonian from the field, as well as the transition from the interaction to the noninteracting theories entails various infinite renormalizations which are made explicit.  相似文献   

14.
We extend the recently introduced continuous matrix product state variational class to the setting of (1+1)-dimensional relativistic quantum field theories. This allows one to overcome the difficulties highlighted by Feynman concerning the application of the variational procedure to relativistic theories, and provides a new way to regularize quantum field theories. A fermionic version of the continuous matrix product state is introduced which is manifestly free of fermion doubling and sign problems. We illustrate the power of the formalism by studying the momentum occupation for free massive Dirac fermions and the chiral symmetry breaking in the Gross-Neveu model.  相似文献   

15.
This paper presents the first examples of massless relativistic quantum field theories which are interacting and asymptotically complete. These two-dimensional theories are obtained by an application of a deformation procedure, introduced recently by Grosse and Lechner, to chiral conformal quantum field theories. The resulting models may not be strictly local, but they contain observables localized in spacelike wedges. It is shown that the scattering theory for waves in two dimensions, due to Buchholz, is still valid under these weaker assumptions. The concepts of interaction and asymptotic completeness, provided by this theory, are adopted in the present investigation.  相似文献   

16.
The renormalizability of quantum gravity remains an open question while it has been established recently that quantum gravity in the presence of standard sources is non-renormalizable. In view of traditional confusion and ambiguities surrounding non-renormalizable quantum field theories, it has been felt that physical theories must be renormalizable. Recently a new, nonperturbative view of non-renormalizable theories has been suggested that may have relevance for various interactions including gravity and various sources. In a path integral approach to quantum field theory such a view attributes ‘hard cores’ in the space of field histories to non-renormalizable interactions. Just as with more familiar ‘hard cores’, turning off the interaction does not completely remove all effects of the potential. Consequently the interacting theory is not even continuously connected to the usual free theory, but rather to an alternative ‘pseudo-free’ theory that incorporates the vestiges of the ‘hard cores’. Some insight into what is the significance and interpretation of non-renormalizable interactions can be gleaned from exactly soluble models. Application of this philosophy of non-renormalizable interactions is discussed for the gravitational field in interaction with some standard sources.  相似文献   

17.
We show how continuous matrix product states of quantum fields can be described in terms of the dissipative nonequilibrium dynamics of a lower-dimensional auxiliary boundary field by demonstrating that the spatial correlation functions of the bulk field correspond to the temporal statistics of the boundary field. This equivalence (1) illustrates an intimate connection between the theory of continuous quantum measurement and quantum field theory, (2) gives an explicit construction of the boundary field allowing the extension of real-space renormalization group methods to arbitrary dimensional quantum field theories without the introduction of a lattice parameter, and (3) yields a novel interpretation of recent cavity QED experiments in terms of quantum field theory, and hence paves the way toward observing genuine quantum phase transitions in such zero-dimensional driven quantum systems.  相似文献   

18.
It is argued that certain quantum field theories, including conventional nonrenormalizable theories, do not reduce to free theories when the interaction is turned off. The limiting, “pseudo-free” theories are formally characterized and suggested as alternative “unperturbed” theories possibly suitable for a meaningful perturbation analysis.  相似文献   

19.
Current views link quantization with dynamics. The reason is that quantum mechanics or quantum field theories address to dynamical systems, i.e., particles or fields. Our point of view here breaks the link between quantization and dynamics: any (classical) physical system can be quantized. Only dynamical systems lead to dynamical quantum theories, which appear to result from the quantization of symplectic structures.  相似文献   

20.
We present a solution to the cosmological constant, the zero-point energy, and the quantum gravity problems within a single comprehensive framework. We show that in quantum theories of gravity in which the zero-point energy density of the gravitational field is well-defined, the cosmological constant and zero-point energy problems solve each other by mutual cancellation between the cosmological constant and the matter and gravitational field zero-point energy densities. Because of this cancellation, regulation of the matter field zero-point energy density is not needed, and thus does not cause any trace anomaly to arise. We exhibit our results in two theories of gravity that are well-defined quantum-mechanically. Both of these theories are locally conformal invariant, quantum Einstein gravity in two dimensions and Weyl-tensor-based quantum conformal gravity in four dimensions (a fourth-order derivative quantum theory of the type that Bender and Mannheim have recently shown to be ghost-free and unitary). Central to our approach is the requirement that any and all departures of the geometry from Minkowski are to be brought about by quantum mechanics alone. Consequently, there have to be no fundamental classical fields, and all mass scales have to be generated by dynamical condensates. In such a situation the trace of the matter field energy-momentum tensor is zero, a constraint that obliges its cosmological constant and zero-point contributions to cancel each other identically, no matter how large they might be. In our approach quantization of the gravitational field is caused by its coupling to quantized matter fields, with the gravitational field not needing any independent quantization of its own. With there being no a priori classical curvature, one does not have to make it compatible with quantization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号