首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The simulation of rolling tires including stationary rolling, modal analysis, excitation with roughness of road surfaces and sound radiation is presented for state of the art industrial tire models. The target of this research, part of the german project “Leiser Straßenverkehr”, is the reduction of trafic noise, whereas the main source, namely the tire/road system, is investigated in contrast to other techniques like sound insulating walls. The needs and methods for the solution of the resulting large scale problems are discussed next to special properties of rotating structures, high frequency behavior of rubber material and approaches for the reduction of computational cost. For the validation of the model measurements of real tires and roads are used. These include shaker tests of the standing tire and acoustics of tires rolling on a drum. The same set–ups are applied to the simulation for the comparison of frequency response functions and sound pressure levels. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Rolling tires are excited from the contact with the rough road surface to vibrations, which cause rolling noise. A two scale approach is suggested, where at the macro–scale the vibration of the rolling tire structure is modeled by quite detailed finite element methods. The road surface is described using measured textures. A fine resolution finite element discretization of the tread rubber is performed in order to resolve the asperity contact. The material properties are described by a non–linear viscoelastic rubber model. The tread patch is enforced to approach the rough surface in a transient dynamics manner. From these investigations an enveloping surface profile is reconstructed to be used for the excitation. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
《Applied Mathematical Modelling》2014,38(5-6):1622-1637
Rubber is the main component of pneumatic tires. The tire heating is caused by the hysteresis effects due to the deformation of the rubber during operation. Tire temperatures can depend on many factors, including tire geometry, inflation pressure, vehicle load and speed, road type and temperature and environmental conditions. The focus of this study is to develop a finite element approach to computationally evaluate the temperature field of a steady-state rolling tire. For simplicity, the tire is assumed to be composed of rubber and body-ply. The nonlinear mechanical behavior of the rubber is characterized by a Mooney–Rivlin model while the body-ply is assumed to be linear elastic material. The coupled effects of the inflation pressure and vehicle loading are investigated. The influences of body-ply stiffness are studied as well. The simulation results show that loading is the main factor to determine the temperature field. The stiffer body-ply causes less deformation of rubber and consequently decreases the temperature.  相似文献   

4.
Maik Brinkmeier  Udo Nackenhorst 《PAMM》2007,7(1):4040033-4040034
In this paper the dynamic effects due to rotation of spinning circular structures will be discussed by analytical, experimental and numerical investigations. Basic phenomena of spinning are studied on the analytical solution of a spinning ring. The observed effects will be underlined by rather simple experimental investigations on a rotating wine glass. Based on this fundamental knowledge special attention has to be payed to the finite element modeling and implementation of the eigenvalue analysis of gyroscopic systems, which requires the numerical solution in complex numbers. Besides the influence of rotational speed, the disturbances due to rolling contact will be discussed on rotating tubes as well as detailed finite element models of rolling tires. The application of these techniques with emphasis to the prediction of tire noise will be outlined. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Real-time simulation models are widely used for vehicle development, usually built up as rigid multibody systems. However, since lightweight structures are commonly used, body deformation is no longer negligible and rigid multibody simulations may be inaccurate. This work presents a real-time capable full vehicle model with a flexible car body, derived from a finite element model, whose performance has been improved by model order reduction. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
The design of vehicle bodies requires the knowledge of the vehicle's structural response to external loads and disturbances. In rigid multi-body simulation the dynamic behaviour of complex systems is calculated with rigid bodies and neglect of body elasticity. On the other hand, in finite element models large degree of freedom numbers are used to represent the elastic properties of a single body. Both simulation methods can be combined, if the finite element model size is reduced to a degree of freedom number feasible to multi-body simulation. The application to practical purposes requires the use and interconnection of several different software tools. In this contribution a holistic method is presented, which starts with the measurement or synthesis of loads and excitations, continues with the integration of a reduced finite element model into a multi-body system, the dynamic response calculation of this combined model, and concludes with the result expansion to the full finite element model for calculating strain and stress values at any point of the finite element mesh. The applied software tools are Simpack, Nastran, and Matlab. An example is given with a railway vehicle simulated on measured track geometry. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
A threedimensional constitutive model of finite viscoelasticity will be presented. It considers the amplitude dependence and is based on a Maxwell chain with intrinsic time scales. This type of viscoelasticity is thermodynamically consistent and provides a basis for modelling other effects (e.g. temperature dependence). The parameter identification for this model is possible in both the frequency and the time domain. Some finite element implementation and simulation results in the time domain are presented. The numerical simulation of multifrequent and other more complicated loading processes is possible only in the time domain. A very interesting loading process is a cyclic deformation with changing amplitudes in order to simulate the transient dynamic behavior of the Payne-effect. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The eigenvalue analysis of rolling tires is one part of the simulation of tire rolling noise radiation for the reduction of traffic noise. In this paper the general strategies of numerical eigenvalue analysis for nonsymmetric matrices are shown. The special effects observed on rotating bodies are discussed in details. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
ABSTRACT

In hybrid reluctance actuators, the achievable closed-loop system bandwidth is affected by the eddy currents and hysteresis in the ferromagnetic components and the mechanical resonance modes. Such effects must be accurately predicted to achieve high performance via feedback control. Therefore, a multiphysics electro-mechanical finite element model is proposed in this paper to compute the dynamics of a 2-DoF hybrid reluctance actuator. An electromagnetic simulation is adopted to compute the electromagnetic dynamics and the actuation torque, which is employed as input for a structural dynamic simulation computing the electro-mechanical frequency response function. For model validation, the simulated and measured frequency response plots are compared for two actuators with solid and laminated outer yoke, respectively. In both cases, the model accurately predicts the measurement results, with a maximum relative phase error of 1.7% between the first resonance frequency and 1 kHz and a relative error of 1.5% for the second resonance frequency..  相似文献   

10.
A method based on constrained optimization for updating of an acoustic finite element model using pressure response is proposed in this paper. The constrained optimization problem is solved using sequential quadratic programming algorithm. Updating parameters related to the properties of the sound absorbers and the measurement errors are considered. Effectiveness of the method is demonstrated by numerical studies on a 2D rectangular cavity and a car cavity. It is shown that the constrained formulation, that includes lower and upper bounds on the updating parameters in the form of inequality constraints, is important for obtaining a correct updated model. It is seen that the proposed updating method is not only able to effectively update the model to obtain a close match between the finite element model pressure response and the reference pressure response, but is also able to identify the correction factors to the parameters in error with reasonable accuracy.  相似文献   

11.
Among others, two main objectives of modern vehicle design are road friendliness and ride comfort. Both aspects are strongly related since the dynamical tire forces depend on the vertical acceleration of the vehicle. In order to investigate the influence of design and operation parameters, different car models are considered which move with constant velocity on a rippled road. First, a linear half car model is examined and the influence of different design parameters is discussed. Second, nonlinear suspensions with Coulomb friction due to sealings as well as with bilinear shock absorbers are taken into account. The vertical dynamics of the vehicle model and the dynamic tire forces between vehicle and road are calculated using analytical methods. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Due to inner pressure the tire is a prestressed system of cord layers. The cord layers are covered by rubber layers. The whole structure is coated by a wear-resistive thread and a soft side wall coating. Serving as a boundary condition at the cord ends is a steel ring at both sides of the wheel rim. To stiffen the thread the structure has a steel cord belt with a ply angle of ±20° to the circumferential direction. The rolling system works like a spring with changing contact forces, and to compute the car dynamics it is necessary to take into account a high frequency and nonlinear varying contact. The forces between tire and road are limited by friction which gives rise to high frequency friction oscillations. Also the structural dynamics of the tire is nonconservative and self-excited, and an appropriate damping of cords and rubber is needed to stabilize the system dynamically. The computing static equilibrium and equations of motion of a continuum mechanics membrane model are treated, and the discretization to a multi-masspoint model is shown. The resulting nonlinear system of Newtonian equations is solved by using the predictor-corrector integration method in time. The time step of integration is due to the highest frequency of the system, and it is ten times shorter than the minimum of oscillation time in the system. All the nonlinearities, the hysteretic damping, and small bending moments of the rubber layers are taken into account to compute the nonstationary rolling with slip and spin on uneven roads or soft ground.Presented at the Ninth International Conference on the Mechanics of Composite Materials, Riga, October, 1995.Berlin Technical University, Berlin, Germany. Published in Mekhanika Kompozitnykh Materialov, Vol. 32, No. 6, pp. 824–834, November–December, 1996.  相似文献   

13.
A. S. Kompalka  S. Reese 《PAMM》2005,5(1):505-506
In this contribution we derive the iterative finite element model updating algorithm. The ability of the method to detect the damage is verified by means of a simulation with a reference finite element model. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
A sensitivity-based finite element model updating approach is presented to identify the local damages in axially functionally graded (AFG) beams. The local damage is simulated by a reduction in the elemental Young's modulus of the beam. In the forward analysis, free vibration analysis is conducted to obtain the natural frequency of the beam. Then forced vibration responses of the beam under external force are obtained from Newmark direct integration. In the inverse analysis, an objective function is established and a sensitivity-based finite element model updating approach is used to identify the local damages in the beam. Two numerical examples are investigated to illustrate the correctness and efficiency of the proposed method. Damage identification results from measured natural frequencies and the dynamic responses from different excitation forces are compared. The effects of measurement noise on the identification results are investigated. Studies in this paper indicate that the proposed method is efficient and robust for identifying damages in the axially functionally graded beams. Good identified results can be obtained from the short time histories of a few number of measurement points and the first several natural frequencies.  相似文献   

15.
A radial tire is a very complex structure made from rubber elastomers and fiber–rubber composite materials. During its use, extension propagation of interface crack between belts can occur, which obviously affects its durability and life. In the present paper, a new mathematical model of extension propagation of interface crack in complex composite structures is presented. The model can reveal the extension propagation dependence of interface crack on the relative size of energy release rates at the left and right crack tips and on the interfacial material properties. The extension propagation model of interface crack, Irwin’s virtual crack close technique and the finite element analysis method are used together in simulating numerically the extension propagation process of a interface crack between belts of a radial tire. The present study numerical results show that the extension propagation model of interface crack proposed in this paper can more realistically characterize the complexity of the extension propagation process of interface crack in complex composite structures.  相似文献   

16.
Peter Eberhard  Pascal Ziegler 《PAMM》2007,7(1):4010017-4010018
  相似文献   

17.
The interaction between tire and road generates the transferable forces, which are necessary for driving dynamics and safety. These forces are based on friction between rubber material and pavement surface and depend on the roughness of the pavement, the slip velocity, the contact pressure and the temperature. Based on the finite element method, the friction coefficient is calculated by numerical simulation. The roughness of the pavement surface is described by the height difference correlation function (HDCF), which allows partitioning into different length scales. This multiscale approach is suitable to understand and to evaluate friction phenomena. These phenomena are hysteresis friction based on dissipation inside the rubber material and adhesion friction, which describes the direct bonding between two materials. Given, that the material parameters of rubber highly depend on temperature and the frictional dissipation leads to a warming of the rubber, the provision for these effects is necessary for a realistic desciption of friction. The method allows an understanding of friction phenomena on the micro-scale like the real contact area or the microscopic contact pressure. Also, the temperature distribution inside the tire cross-section can be illustrated. The resulting coefficient of friction is validated by experimental data based on linear friction tests and compared to analytical solutions. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Some electromagnetic materials present, in a given frequency range, an effective dielectric permittivity and/or magnetic permeability which are negative. We are interested in the reunion of such a “negative” material and a classical one. More precisely, we consider here a scalar model problem for the simulation of a wave transmission between two such materials. This model is governed by a Helmholtz equation with a weight function in the Δ principal part which takes positive and negative real values. Introducing additional unknowns, we have already proposed in Bonnet-Ben Dhia et al. (2006) [1] some new variational formulations of this problem, which are of Fredholm type provided the absolute value of the contrast of permittivities is large enough, and therefore suitable for a finite element discretization. We prove here that, under similar conditions on the contrast, the natural variational formulation of the problem, although not “coercive plus compact”, is nonetheless suitable for a finite element discretization. This leads to a numerical approach which is straightforward, less costly than the previous ones, and very accurate.  相似文献   

19.
With the advent of multibody system simulations (MSS) programs, it has become common practice to use computer modeling to evaluate vehicle dynamics performance. This approach has proved to be very effective for predicting the handling performance of vehicles; however, it has proved less successful for predicting the vehicle response at frequencies that are of interest in ride harshness and durability applications. The lack of correlation between theory and experiment can be partially traced back to tire models that are inadequate for rough road simulation. This paper presents a comprehensive vehicle dynamics model for simulating the dynamic response of ground vehicles on rough surfaces. This approach uses a MSS program to simulate the vehicle and a nonlinear FE program for the tires. Parallel processing of the tire models improves the efficiency of the overall simulation. Applications for this technology include vehicle ride and harshness analysis and durability loads simulation. This paper describes the MSS vehicle model, the tire FE model, and the interface which transfers data between the two simulations. Simulation and experiment results for a single tire without a vehicle encountering an obstacle and for a vehicle with four tires driving across a pot hole are presented. Conclusions and opportunities for further research end the paper.  相似文献   

20.
One important issue for the simulation of flexible multibody systems is the reduction of the flexible body's degrees of freedom. For the reduction process finite element data and user inputs are necessary. The model reduction program for elastic multibody systems MOREMBS, which is developed at the ITM, has an easy-to-use interface and the data can be gained from the programs ABAQUS or ANSYS. In this work, the simulation of a fuel injection process is investigated with MOREMBS. We focus on the interaction between valve and armature. These two bodies impact in every injection circle. The impacting bodies are modeled as flexible and the contact force is calculated by a penalty approach. One essential part of this work is the investigation of the influence of different model reduction techniques on the impact force calculation of the flexible multibody system. The main reduction techniques modal reduction, Krylov-subspace based and Gramian matrix based techniques are compared. The results achieved with modal reduction, the state of the art reduction method, are not acceptable here. Krylov-subspace based techniques are especially well-suited for large sparse systems but are not error controlled. However, by choosing appropriate moment-matching properties the impact force calculation is nearly as good as with a full finite element model. The Gramian matrix based reduction techniques can be fully automated and are error controlled but require high computational effort. Hence, appropriate approximation schemes have to be used for them. With Gramian matrix based methods we can even further reduce the size of the subsystems compared to Krylov-subspace based methods and still have an impact force calculation nearly as good as with finite element results, but we gain a simulation speedup by the factor 4000. In addition, a parameter study of the parameters involved in the model reduction process is presented. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号