首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The contribution is concerned with the constitutive modeling of the temperature and thermomechanical coupling effects on the rate–dependent finite plastic behavior of glassy polymers. In contrast to the existing kinematic approaches to the finite plasticity of glassy polymers, we propose a distinct kinematic framework constructed in the logarithmic strain space [5]. The logarithmic framework is extremely attractive due to the fact that it allows a very efficient algorithmic treatment of finite plasticity akin to the geometrically linear theory. The evolution law of plastic strains is adopted from Argon's double kink theory [1, 3]. Temperature–induced softening is incorporated by thermal disassociation of the secondary bonds in the polymer network [6, 2]. In the FE analysis of the coupled BVPs, the staggered scheme is employed [7]. The proposed formulation is validated by simulating various experimental data. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
3.
The purpose of this work is the application of the least-squares finite element method to an elastodynamic, quasi-incompressible problem under small strain assumptions. Therefore a mixed finite element based on a weighted least-squares formulation is developed. The L2-norm minimization of the time-discretized residuals of the given first-order system of partial differential equations leads to a functional depending on displacements and stresses. In the numerical example the proposed mixed element is compared to an alternative approach, which is based on a least-squares mixed finite element with improved momentum balance, see [1]. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
B. Eidel  F. Gruttmann 《PAMM》2002,1(1):185-186
We consider a formulation of associative isotropic J2‐elastoplasticity at finite inelastic strains and aspects of its numerical implementation. The essential ingredients include the multiplicative decomposition of the deformation gradient in elastic and inelastic parts, the definition of a convex elastic domain in stress space and a material representation of the constitutive equations for general non‐Cartesian coordinate charts. On the numerical side we propose a stress update algorithm for elasto‐plastic response, including isotropic hardening. The finite element formulation is based on assumed strain and enhanced strain variational principles, for a complete outline see [3]. Remarkably the formulation is very similar to the case of infinitesimal plasticity: (i) The scheme of linear return mapping algorithm takes the form of standard return mapping of the infinitesimal theory for the case of isotropic elastic response. (ii) The algorithmic elastoplastic moduli have a similar structure as in the linear case. Together with an exact fulfillment of plastic incompressibility by means of a simple correction one achieves an advantageously efficient finite element formulation. Its performance is documented by a numerical example.  相似文献   

5.
Serdar Göktepe  Joel Méndez  Christian Miehe 《PAMM》2007,7(1):4060041-4060042
The contribution is concerned with experimental procedures, constitutive modeling and the numerical simulations of finite thermo-viscoplastic behavior of glassy polymers. The experimental study involves both homogeneous and inhomogeneous tests at different temperatures under isothermal conditions. The true stress-true strain curves obtained from compressive homogeneous uniaxial and plane strain experiments are employed in the identification of adjustable material parameters. In contrast to the existing kinematic approaches to finite plasticity of glassy polymers, we propose a distinct kinematic framework constructed in the logarithmic strain space. This leads us to an algorithmically very attractive, additive kinematic structure in R6 similar to the geometrically linear theory. The proposed three-dimensional model is implemented into a finite element code. The load-displacement curves acquired from inhomogeneous experiments are compared against the results obtained from finite element analyses where the material parameters identified from homogeneous experiments are used. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
This contribution deals with a stress-displacement mixed finite element formulation for elasto-plasticity within the framework of small deformations based on the Prange-Hellinger-Reissner (PHR) functional. The interpolations for the displacements are given by standard Lagrangian shape functions and a 5-parameter discontinuous interpolation is introduced for the stresses which was published by [1]. Based on the principle of maximum plastic dissipation the flow rule and hardening law will be derived by regarding a von Mises yield criterion, see [2]. In contrast to [3], we apply a point-wise enforcement of the flow rule, hardening law and loading/unloading conditions. This work is related to the physically nonlinear mixed finite element based on the Prange-Hellinger-Reissner formulations for elasto-plasticity, [4]. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
The modeling of size effects in elastic-plastic solids, such as the width of shear bands or the grain size dependence in polycrystals, must be based on non-standard theories which incorporate length-scales. This is achieved by models of strain gradient plasticity, incorporating spatial gradients of selected micro-structural fields which describe the evolving dissipative mechanisms. The key aspect of this work is to provide a rigorous incremental variational formulation and mixed finite element design of additive finite gradient plasticity in the logarithmic strain space. We start from a mixed saddle point principle for metric-type plasticity, which is specified for the important model problem of isochoric plasticity with gradient-extended hardening/softening response. To this end, we propose a novel finite element design of the coupled problem incorporating a local-global solution strategy of short- and long-range fields. This includes several new aspects, such as extended Q1P0-type and MINI-type finite elements for gradient plasticity [4]. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Finite element modelling of hydrostatic compaction where the applied pressure acts normal to the deformed surface requires a geometric nonlinear formulation and follower load terms [1, 5, 7]. These concepts are applied to high order [6] (p-FEM) elements with hierarchic shape functions. Applying the blending function method allows to precisely describe curved boundaries on coarse meshes. High order elements exhibit good performance even for high aspect ratios and strong distortion and therefore allow an efficient discretization of thin-walled structures. Since high order finite elements are less prone to locking effects a pure displacement-based formulation can be chosen. After introducing the basic concept of the p-version the application of follower loads to geometrically nonlinear high order elements is presented. For the numerical solution the displacement based formulation is linearized yielding the basis for a Newton-Raphson iteration. The accuracy and performance of the high order finite element scheme is demonstrated by a numerical example. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Most metals fail in a ductile fashion, i.e, fracture is preceded by significant plastic deformation. The modeling of failure in ductile metals must account for complex phenomena at micro-scale, such as nucleation, growth and coalescence of micro-voids. In this work, we start with von-Mises plasticity model without considering void generation. The modeling of macroscopic cracks can be achieved in a convenient way by the continuum phase field approaches to fracture, which are based on the regularization of sharp crack discontinuities [1]. This avoids the use of complex discretization methods for crack discontinuities and can account for complex crack patterns. The key aspect of this work is the extension of the energetic and the stress-based phase field driving force function in brittle fracture to account for a coupled elasto-plastic response in line with our recent work [3]. We develop a new theoretical and computational framework for the phase field modeling of ductile fracture in elastic-plastic solids. To account for large strains, the constitutive model is constructed in the logarithmic strain space, which simplify the model equations and results in a formulation similar to small strains. We demonstrate the modeling capabilities and algorithmic performance of the proposed formulation by representative simulations of ductile failure mechanisms in metals. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The phase field modeling of brittle fracture was a topic of intense research in the last few years and is now well-established. We refer to the work [1-3], where a thermodynamically consistent framework was developed. The main advantage is that the phase-field-type diffusive crack approach is a smooth continuum formulation which avoids the modeling of discontinuities and can be implemented in a straightforward manner by multi-field finite element methods. Therefore complex crack patterns including branching can be resolved easily. In this paper, we extend the recently outlined phase field model of brittle crack propagation [1-3] towards the analysis of ductile fracture in elastic-plastic solids. In particular, we propose a formulation that is able to predict the brittle-to-ductile failure mode transition under dynamic loading that was first observed in experiments by Kalthoff and Winkler [4]. To this end, we outline a new thermodynamically consistent framework for phase field models of crack propagation in ductile elastic-plastic solids under dynamic loading, develop an incremental variational principle and consider its robust numerical implementation by a multi-field finite element method. The performance of the proposed phase field formulation of fracture is demonstrated by means of the numerical simulation of the classical Kalthoff-Winkler experiment that shows the dynamic failure mode transition. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
In the present study, a computational approach for the numerical simulation of ductile fracture within the framework of the finite element method is proposed. In the developed macroscopic formulation, the inelastic behavior in the bulk of the material is described by the finite elasto‐plastic material model proposed in [4]. The failure process is modeled by introducing discontinuities when a special local fracture criterion is satisfied. The discontinuities are incorporated via special triangular finite elements with embedded interfaces following the line of [2]. Finally, the numerical procedure is evaluated for a twodimensional representative test problem. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
In this contribution we present the least-squares finite element method (LSFEM) for the incompressible Navier-Stokes equations. In detail, we consider a non-Newtonian fluid flow, which is described by a power-law model, see [1]. The second-order problem is reformulated by introducing a first-order div-grad system consisting of the equilibrium condition, the incompressibility condition and the constitutive equation, which are written in residual forms, see [2]. Here, higher-order finite elements which are an important aspect regarding accuracy for the present formulation are investigated. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Alexander Schwarz  Jörg Schröder 《PAMM》2007,7(1):4040043-4040044
The objective of this work is to discuss a least-squares finite element method with applications to physically nonlinear and anisotropic constitutive equations at small strains. The L2-norm minimization of the residuals of the given first order system of differential equations leads to a functional, which is a two field formulation in the displacements and the stresses, see e.g. Cai & Starke [1]. These functionals provide the foundation for the formulations of the related least-squares mixed finite elements. A main focus of the presentation lies on the extension of plane elasticity to anisotropic or nonlinear material behavior. In this context transversely isotropic elasticity and viscoplasticity is considered. Finally a numerical example is presented. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
In the present work a mixed finite element based on a least-squares formulation is proposed. In detail, the provided constitutive relation is based on a hyperelastic free energy including terms describing a transversely isotropic material behavior. Basis for the element formulation is a weak form resulting from a least-squares method, see e.g. [1]. The L2-norm minimization of the residuals of the given first-order system of differential equations leads to a functional depending on displacements and stresses. The interpolation of the unknowns is executed using different approximation spaces for the stresses (Wq (div, Ω)) and the displacements (W1,p(Ω)), under consideration of suitable p and q. For the approximation of the stresses vector-valued shape functions of Raviart-Thomas type, related to the edges of the respective triangular element, are applied. Standard interpolation polynomials are used for the continuous approximation of the displacements. The performance of the proposed formulation will be investigated considering a numerical example. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
The main goal of the present work is the comparison of the performance of a least-squares mixed finite element formulation where the solution variables (displacements and stresses) are interpolated using different approximation spaces. Basis for the formulation is a weak form resulting from the minimization of a least-squares functional, compare e.g. [1]. As suitable functions for standard interpolation polynomials of Lagrangian type are chosen. For the conforming discretization of the Sobolev space vector-valued Raviart-Thomas interpolation functions, see also [2], are used. The resulting elements are named as PmPk and RTmPk. Here m (stresses) and k (displacements) denote the approximation order of the particular interpolation function. For the comparison we consider a two-dimensional cantilever beam under plain strain conditions and small strain assumptions. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
In this contribution three mixed least-squares finite element methods (LSFEMs) for the incompressible Navier-Stokes equations are investigated with respect to accuracy and efficiency. The well-known stress-velocity-pressure formulation is the basis for two further div-grad least-squares formulations in terms of stresses and velocities (SV). Advantage of the SV formulations is a system with a smaller matrix size due to a reduction of the degrees of freedom. The least-squares finite element formulations, which are investigated in this contribution, base on the incompressible stationary Navier-Stokes equations. The first formulation under consideration is the stress-velocity-pressure formulation according to [1]. Secondly, an extended stress-velocity formulation with an additional residual is derived based on the findings in [1] and [5]. The third formulation is a pressure reduced stress-velocity formulation based on a condensation scheme. Therefore, the pressure is interpolated discontinuously, and eliminated on the discrete level without the need for any matrix inverting. The modified lid-driven cavity boundary value problem, is investigated for the Reynolds number Re = 1000 for all three formulations. (© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
The computational modeling of failure mechanisms in solids due to fracture based on sharp crack discontinuities suffers in situations with complex crack topologies. This can be overcome by diffusive crack modeling, based on the introduction of a crack phase field as outlined in [1, 2]. Following these formulations, we outline a thermodynamically consistent framework for phase field models of crack propagation in elastic solids, develop incremental variational principles and, as an extension to [1, 2], consider their numerical implementations by an efficient h-adaptive finite element method. A key problem of the phase field formulation is the mesh density, which is required for the resolution of the diffusive crack patterns. To this end, we embed the computational framework into an adaptive mesh refinement strategy that resolves the fracture process zones. We construct a configurational-force-based framework for h-adaptive finite element discretizations of the gradient-type diffusive fracture model. We develop a staggered computational scheme for the solution of the coupled balances in physical and material space. The balance in the material space is then used to set up indicators for the quality of the finite element mesh and accounts for a subsequent h-type mesh refinement. The capability of the proposed method is demonstrated by means of a numerical example. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
This work outlines a variational-based framework for the phase field modeling of ductile fracture in elastic-plastic solids at large strains. The phase field approach regularizes sharp crack discontinuities within a pure continuum setting by a specific gradient damage model with geometric features rooted in fracture mechanics. Based on the recent works [1, 2], the phase field model of ductile fracture is linked to a formulation of gradient plasticity at finite strains in order to ensure the crack to evolve inside the plastic zones. The thermodynamic formulation is based on the definition of a constitutive work density function including the stored elastic energy and the dissipated work due to plasticity and fracture. The proposed canonical theory is shown to be governed by a rate-type minimization principle, which determines the coupled multi-field evolution problem. Another aspect is the regularization towards a micromorphic gradient plasticity-damage setting which enhances the robustness of the finite element formulation. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
With the significantly increasing applications of smart structures, piezoelectric material is widely used in branches of engineering sciences. Normally, the Finite Element Method is employed in the numerical analysis of these structures [2]. In this contribution, in order to avoid the locking effects and zero energy modes, the Assumed Natural Strain (ANS) Method [4] is implemented into four‐node piezoelectric shallow shell elements, by using the two‐field variational formulation in which displacements and electric potentials serve as independent variables and the three‐field variational formulation in which the dielectric displacement is taken as an independent variable additionally [3]. Moreover, a quadratic variation of the electric potential through the thickness direction is applied in the two‐field formulation. Numerical examples of piezoelectric sensors and actuators are presented, showing the behaviour of the shell elements by using different hybrid finite element formulations. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
In this paper, the p-version finite element method and its fictitious domain extension, the finite cell method, are extended to the finite strain J2 plasticity. High-order shape functions are used for the finite element approximation of volume-preserving plastic dominated deformations. The accuracy and efficiency of p-version elements and cells in the finite plastic strain range are evaluated by the computation of two benchmark problems. It is shown that they provide locking free behavior and simplified meshing. These results are verified in comparison with the results of h-version elements in F-bar formulation. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号