首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
G. Wang  S. Liu  L. Li  S. Liu  M. Liu  J. Liu 《Laser Physics》2007,17(12):1349-1352
By using both an acoustooptical (AO) modulator and a Cr4+:YAG saturable absorber in the cavity, a diode-pumped doubly Q-switched Nd:GdVO4 laser, which can generate short pulses with high peak powers and symmetric temporal profiles, has been demonstrated. A peak power of 3.05 kW with a corresponding pulse width of 16 ns has been achieved at an incident pump power of 7.7 W. A reasonable analysis about the experimental results has been given by considering the ground-state absorption and excited-state absorption of a Cr4+:YAG crystal.  相似文献   

2.
We report a high repetition rate Q-switched Nd:YVO4/Cr4+:YAG micro laser with small pump power. Unwanted defects in pulse train, which are inherently large in passively Q-switched laser, was simply minimized by controlling temperature of Nd:YVO4/Cr4+:YAG medium. When T 0 = 90% Cr4+:YAG and R OC = 90% output coupler were used, Q-switched Nd:YVO4/Cr4+:YAG micro laser showed the optimum output; maximum output power of 58 mW, optical-to-optical efficiency of 9.1%, repetition rate of 1.1 MHz, and pulse width of 57 ns were achieved with 640 mW pumping. MHz-order repetition rate in Nd:YVO4/Cr4+:YAG Q-switched laser with low pumping (<1 W) is the highest value to the best of our knowledge.  相似文献   

3.
An efficient diode-pumped passively Q-switched Nd:GdVO4/Cr4+:YAG laser was employed to generate a high-repetition-rate, high-peak-power eye-safe laser beam with an intracavity optical parametric oscillator (OPO) based on a KTP crystal. The conversion efficiency for the average power is 8.3% from pump diode input to OPO signal output and the slope efficiency is up to 10%. At an incident pump power of 14.5 W, the compact intracavity OPO cavity, operating at 46 kHz, produces average powers at 1571 nm up to 1.2 W with a pulse width as short as 700 ps. PACS 42.60.Gd; 42.65.Yj; 42.55.X  相似文献   

4.
J. Ma  Y. Xu  P. Zhao  D. Liu 《Laser Physics》2010,20(8):1703-1706
Using a V3+:YAG saturable absorber, we realize the running of a laser-diode end-pumped passively Q-switched intracavity-frequency-doubling Nd:GdVO4/KTP red laser. Under the absorbed pump power of 9.45 W and with V3+:YAG initial transmission T 0 = 94%, the obtained average output power and pulse width were 610 mW and 15.09 ns with the repetition rate of 12.2 kHz, corresponding to the single pulse energy 50 μJ and the pulse peak power 3.34 kW.  相似文献   

5.
A diode-end-pumped passively Q-switched 912 nm Nd:GdVO4/Cr:YAG laser is demonstrated for the first time. In a concave-piano cavity, pulsed 912 nm laser performance is investigated using two kinds of Cr:YAG crystal with different unsaturated transmission (T U) of 95% and 90% at 912 nm as the saturable absorbers. When the T U = 90% Cr:YAG is used, as much as 2.6 W average output power for short pulsed 912 nm laser is achieved at an absorbed pump power of 34.0 W, corresponding to an optical efficiency of 7.6% and a slope efficiency of 20.3%. Moreover, 10.5 ns duration pulses and up to 2.3 kW peak power is obtained at the repetition rate around 81.6 kHz.  相似文献   

6.
The character of a diode-pumped passively Q-switched Nd:GdVO4/V3+:YAG 912 nm laser was demonstrated for the first time to our knowledge. With an absorbed pump power of 7.4 W, an average output power of 360 mW with a Q-switched pulse width of 328 ns at a pulse repetition rate of 163 kHz was obtained. The Q-switching efficiency was found to be 32.7%. Our work further indicated V3+:YAG could be an effective fast passive Q-switch for 0.9 μm radiation.  相似文献   

7.
A diode pumped Nd:Y0.5Lu0.5VO4 pulse laser modulated with an acousto-optic (AO) Q-switcher and Cr4+:YAG saturable absorber is first demonstrated in this paper. The laser is shown to generate shorter pulse width than AO Q-switched laser alone, and have a higher peak power and single pulse energy than passively Q-switched laser with only Cr4+:YAG. A laser pulse width of 6.16 ns and a peak power of about 43.83 kW are achieved at the incident pumping power of 14.09 W.  相似文献   

8.
J. Ma  Y. Zhai  D. Li  C. Fang  D. Liu 《Laser Physics》2011,21(4):680-683
By simultaneously using both a V3+:YAG and a Co2+:LaMgAl11O19 saturable absorber in the cavity, for the first time to our knowledge, a diode-pumped doubly Q-switched Nd:GdVO4 laser has been realized. The dependence of pulse width, pulse repetition rate, pulse energy and peak power on the incident pump power are measured. Under the absorbed pump power of 8.59 W, both the pulse temporal profile of the passive double-switching with the pulse width of 25.29 ns, and the passive single-switching just using V3+:YAG with pulse width of 30.46 ns are obtained. The pulse duration is partly compressed in contrast to the purely passively Q-switched laser with V3+:YAG.  相似文献   

9.
I report the first demonstration of the generation of efficient sub-nanosecond self-stimulated Raman pulses by a diode-pumped passively Q-switched Nd:GdVO4/Cr4+:YAG laser. The conversion efficiency for the average power is 7% from pump diode input to self-Raman output and the slope efficiency is up to 14%. At an incident pump power of 2.0 W, the pulse duration, pulse energy, and peak power for the Stokes wavelength of 1175.6 nm were found to be 750 ps, 6.3 J, and 8.4 kW, respectively, with a pulse-repetition rate of 22 kHz. PACS 42.55.Ye; 42.55.Xi; 42.60.Gd  相似文献   

10.
Passively Q-switched green output with Cr4+:YAG as saturable absorber and PPMgLN as the frequency doubling crystal was realized in a compact diode end-pumped Nd:YVO4 laser. The green light output power, pulse width, pulse repetition rate, pulse energy and peak power with three Cr4+:YAG of different initial transmissions were investigated. The maximum average output power was 1.2 W at the pump power of 4.0 W and the maximum conversion efficiency was 30% with the Cr4+:YAG of 90% initial transmission. The maximum pulse energy and minimum pulse width were 10.9 μJ and 12 ns with the Cr4+:YAG of 75% initial transmission.  相似文献   

11.
In this paper, we report a 22.7 W continuous wave (CW) diode-pumped cryogenic Ho( at %), Tm(3 at %):GdVO4 laser. The pumping sources of Ho,Tm:GdVO4 laser are two fiber-coupled laser diodes with fiber core diameter of 0.4 mm, both of them can supply 42 W power laser operating near 802 nm. For input pump power of 64.7 W at 802.5 nm, the output power of 22.7 W in CW operation, optical-to-optical conversion efficiency of 35.1% at 2.05 μm has been attained. The M 2 factor was found to be 2.0 under an output power of 16.5 W.  相似文献   

12.
Nd3+:NaY(WO4)2, known as Nd:NYW, is a new type crystal. By using laser-diode as pump source, a passive Q-switching of intracavity-frequency-doubling Nd:NYW/KTP laser has been realized with Cr4+:YAG saturable absorber. The dependence of pulse repetition rate, pulse energy, pulse width, and peak power on incident pump power for different small-signal transmissions of Cr4+:YAG are measured. The coupled rate equations are used to simulate the Q-switched process of laser, and the numerical solutions agree with the experimental results.  相似文献   

13.
In this paper, we present experimental results concerning on the laser characteristics of Tm:YAG laser and Tm: GdVO4 laser. At room temperature, the maximum output power of Tm:YAG laser and Tm:GdVO4 laser is 210 and 145 mW, respectively. High efficiency can be achieved for both lasers at room temperature. Nevertheless, compared with Tm:GdVO4 laser, Tm:YAG laser can operate on single frequency with high power easily. As much as 60 mW of 2013.9 nm single-longitudinal-mode (SLM) laser was achieved for Tm:YAG laser. For Tm:GdVO4 laser 51 mW of 1919.7 nm SLM laser was achieved. The SLM Tm:YAG laser is better for using as a seed laser for coherent wind measurements and differential absorption LIDAR systems.  相似文献   

14.
Diode end-pumped single-frequency Tm:GdVO4 laser at room temperature was reported. The maximal output power of single-frequency is as high as 51 mW by using two uncoated fused YAG etalons, which are respectively 0.05 mm thick and 1 mm thick. We obtained the single frequency Tm:GdVO4 laser at 1919.7 nm. The slope efficiency is 1.4%. The single-longitudinal-mode (SLM) laser can be used as a seed laser for coherent wind measurements and differential absorption LIDAR systems.  相似文献   

15.
This work presents experimental results concerning a passively Q-switched intracavity frequencydoubled Nd:LuVO4/LBO green laser with a Cr4+:YAG saturable absorber operated at the wavelength of 0.53 μm. A maximal output power of 1.28 W was obtained at a pump power of 16.34 W, and peak power, pulse width as well as repetition frequency were 1.48 kW, 41 ns and 21 kHz, respectively.  相似文献   

16.
Passive mode locking of a solid-state Nd:GdVO4 laser is demonstrated. The laser is mode locked by use of a semiconductor absorber mirror (SAM). A low Nd3+ doped Nd:GdVO4 crystal is used to mitigate the thermal lens effect of the laser crystal at a high pump power. The maximum average output power is up to 6.5 W, and the pulse duration is as short as 6.2 ps. The optic-to-optic conversion efficiency is 32.5% and the repetition rate is about 110 MHz.  相似文献   

17.
Z. C. Wu 《Laser Physics》2011,21(12):2068-2071
We report the efficient compact red laser at 670 nm generation by intracavity frequency doubling of a continuous wave laser operation of a diode pumped Nd:GdVO4 laser on the 4 F 3/24 I 13/2 transition at 1340 nm. An GdCa4O(BO3)3 (GdCOB) crystal, cut for critical type I phase matching at room temperature is used for second harmonic generation of the laser. At an incident pump power of 18.2 W, as high as 1.32 W of continuous wave (CW) output power at 670 nm is achieved with 15-mm-long GdCOB. The optical-to-optical conversion efficiency is up to 7.3%, and the fluctuation of the red output power was better than 3.5% in the given 30 min.  相似文献   

18.
A high-efficiency Nd:GdVO4 bounce laser in-band pumped at 879 nm is demonstrated for the first time. From a side-pumped Nd:GdVO4 crystal, 8.2 W output was obtained with 18.5 W absorbed pump power. Corresponding slope efficiency with respect to the absorbed pump power was 51.4%, and the beam quality factor M2 is 1.13 and 1.15 for tangential direction and sagittal direction, respectively. Effects of crystal’s doping concentration and temperature on laser power and conversion efficiency were also investigated.  相似文献   

19.
A diode end-pumped single-frequency Tm:GdVO4 laser at room temperature was reported. The maximal output power of single-frequency is as high as 66 mW by using two uncoated fused etalons, which are respectively 0.05 mm thick YAG and 1 mm thick quartz. We obtained the single frequency Tm:GdVO4 laser at 1875.1 nm. The slope efficiency is 1.5%. The change of the lasing wavelength on temperature was also measured. The single-longitudinal-mode (SLM) laser can be used as a seed laser for coherent wind measurements and differential absorption LIDAR systems.  相似文献   

20.
We report a red laser at 670.5 nm generation by intracavity frequency doubling of a continuous wave (CW) laser operation of a 1341 nm Nd:GdVO4 laser under in-band diode pumping at 912 nm. An LBO crystal, cut for critical type I phase matching is used for second harmonic generation of the laser. At an incident pump power of 8.9 W, as high as 347 mW of CW output power at 670.5 nm is achieved. The fluctuation of the red output power was better than 3.7% in the given 30 min, and the beam quality factor M 2 is 1.65.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号