首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Let ${\mathfrak{g}}Let \mathfrakg{\mathfrak{g}} be a finite dimensional simple Lie algebra over an algebraically closed field \mathbbK\mathbb{K} of characteristic 0. Let \mathfrakg\mathbbZ{\mathfrak{g}}_{{\mathbb{Z}}} be a Chevalley ℤ-form of \mathfrakg{\mathfrak{g}} and \mathfrakg\Bbbk=\mathfrakg\mathbbZ?\mathbbZ\Bbbk{\mathfrak{g}}_{\Bbbk}={\mathfrak{g}}_{{\mathbb{Z}}}\otimes _{{\mathbb{Z}}}\Bbbk, where \Bbbk\Bbbk is the algebraic closure of  \mathbbFp{\mathbb{F}}_{p}. Let G\BbbkG_{\Bbbk} be a simple, simply connected algebraic \Bbbk\Bbbk-group with \operatornameLie(G\Bbbk)=\mathfrakg\Bbbk\operatorname{Lie}(G_{\Bbbk})={\mathfrak{g}}_{\Bbbk}. In this paper, we apply recent results of Rudolf Tange on the fraction field of the centre of the universal enveloping algebra U(\mathfrakg\Bbbk)U({\mathfrak{g}}_{\Bbbk}) to show that if the Gelfand–Kirillov conjecture (from 1966) holds for \mathfrakg{\mathfrak{g}}, then for all p≫0 the field of rational functions \Bbbk (\mathfrakg\Bbbk)\Bbbk ({\mathfrak{g}}_{\Bbbk}) is purely transcendental over its subfield \Bbbk(\mathfrakg\Bbbk)G\Bbbk\Bbbk({\mathfrak{g}}_{\Bbbk})^{G_{\Bbbk}}. Very recently, it was proved by Colliot-Thélène, Kunyavskiĭ, Popov, and Reichstein that the field of rational functions \mathbbK(\mathfrakg){\mathbb{K}}({\mathfrak{g}}) is not purely transcendental over its subfield \mathbbK(\mathfrakg)\mathfrakg{\mathbb{K}}({\mathfrak{g}})^{\mathfrak{g}} if \mathfrakg{\mathfrak{g}} is of type B n , n≥3, D n , n≥4, E6, E7, E8 or F4. We prove a modular version of this result (valid for p≫0) and use it to show that, in characteristic 0, the Gelfand–Kirillov conjecture fails for the simple Lie algebras of the above types. In other words, if \mathfrakg{\mathfrak{g}} is of type B n , n≥3, D n , n≥4, E6, E7, E8 or F4, then the Lie field of \mathfrakg{\mathfrak{g}} is more complicated than expected.  相似文献   

2.
Let \mathfraka \mathfrak{a} be an algebraic Lie subalgebra of a simple Lie algebra \mathfrakg \mathfrak{g} with index \mathfraka \mathfrak{a}  ≤ rank \mathfrakg \mathfrak{g} . Let Y( \mathfraka ) Y\left( \mathfrak{a} \right) denote the algebra of \mathfraka \mathfrak{a} invariant polynomial functions on \mathfraka* {\mathfrak{a}^*} . An algebraic slice for \mathfraka \mathfrak{a} is an affine subspace η + V with h ? \mathfraka* \eta \in {\mathfrak{a}^*} and V ì \mathfraka* V \subset {\mathfrak{a}^*} subspace of dimension index \mathfraka \mathfrak{a} such that restriction of function induces an isomorphism of Y( \mathfraka ) Y\left( \mathfrak{a} \right) onto the algebra R[η + V] of regular functions on η + V. Slices have been obtained in a number of cases through the construction of an adapted pair (h, η) in which h ? \mathfraka h \in \mathfrak{a} is ad-semisimple, η is a regular element of \mathfraka* {\mathfrak{a}^*} which is an eigenvector for h of eigenvalue minus one and V is an h stable complement to ( \textad  \mathfraka )h \left( {{\text{ad}}\;\mathfrak{a}} \right)\eta in \mathfraka* {\mathfrak{a}^*} . The classical case is for \mathfrakg \mathfrak{g} semisimple [16], [17]. Yet rather recently many other cases have been provided; for example, if \mathfrakg \mathfrak{g} is of type A and \mathfraka \mathfrak{a} is a “truncated biparabolic” [12] or a centralizer [13]. In some of these cases (in particular when the biparabolic is a Borel subalgebra) it was found [13], [14], that η could be taken to be the restriction of a regular nilpotent element in \mathfrakg \mathfrak{g} . Moreover, this calculation suggested [13] how to construct slices outside type A when no adapted pair exists. This article makes a first step in taking these ideas further. Specifically, let \mathfraka \mathfrak{a} be a truncated biparabolic of index one. (This only arises if \mathfrakg \mathfrak{g} is of type A and \mathfraka \mathfrak{a} is the derived algebra of a parabolic subalgebra whose Levi factor has just two blocks whose sizes are coprime.) In this case it is shown that the second member of an adapted pair (h, η) for \mathfraka \mathfrak{a} is the restriction of a particularly carefully chosen regular nilpotent element of \mathfrakg \mathfrak{g} . A by-product of our analysis is the construction of a map from the set of pairs of coprime integers to the set of all finite ordered sequences of ±1.  相似文献   

3.
Let e be a nilpotent element of a complex simple Lie algebra $ \mathfrak{g} Let e be a nilpotent element of a complex simple Lie algebra \mathfrakg \mathfrak{g} . The weighted Dynkin diagram of e, D(e) \mathcal{D}(e) , is said to be divisible if D(e)
/ 2 {{{\mathcal{D}(e)}} \left/ {2} \right.} is again a weighted Dynkin diagram. The corresponding pair of nilpotent orbits is said to be friendly. In this paper we classify the friendly pairs and describe some of their properties. Any subalgebra \mathfraks\mathfrakl3 \mathfrak{s}{\mathfrak{l}_3} in \mathfrakg \mathfrak{g} gives rise to a friendly pair; such pairs are called A2-pairs. If Gx is the lower orbit in an A2-pair, then x ? [ \mathfrakgx,\mathfrakgx ] x \in \left[ {{\mathfrak{g}^x},{\mathfrak{g}^x}} \right] , i.e., x is reachable. We also show that \mathfrakgx {\mathfrak{g}^x} has other interesting properties. Let \mathfrakgx = ?i \geqslant 0\mathfrakgx(i) {\mathfrak{g}^x} = { \oplus_{i \geqslant 0}}{\mathfrak{g}^x}(i) be the \mathbbZ - \textgrading \mathbb{Z} - {\text{grading}} determined by a characteristic of x. We prove that \mathfrakgx {\mathfrak{g}^x} is generated by the Levi subalgebra \mathfrakgx(0) {\mathfrak{g}^x}(0) and two elements of \mathfrakgx(1) {\mathfrak{g}^x}(1) . In particular, the nilpotent radical of \mathfrakgx {\mathfrak{g}^x} is generated by the subspace \mathfrakgx(1) {\mathfrak{g}^x}(1) .  相似文献   

4.
The cohomology H \mathfrakg\mathfrak{g} ) of the tangent Lie algebra \mathfrakg\mathfrak{g} of the group G with coefficients in the one-dimensional representation \mathfrakg\mathfrak{g} \mathbbK\mathbb{K} defined by [(W)\tilde] \mathfrakg \tilde \Omega _\mathfrak{g} of H 1(G/ \mathfrakg\mathfrak{g} .  相似文献   

5.
Let G be a finite soluble group and F\mathfrakX(G) {\Phi_\mathfrak{X}}(G) an intersection of all those maximal subgroups M of G for which G
/ \textCor\texteG(M) ? \mathfrakX {{G} \left/ {{{\text{Cor}}{{\text{e}}_G}(M)}} \right.} \in \mathfrak{X} . We look at properties of a section F( G / F\mathfrakX(G) ) F\left( {{{G} \left/ {{{\Phi_\mathfrak{X}}(G)}} \right.}} \right) , which is definable for any class \mathfrakX \mathfrak{X} of primitive groups and is called an \mathfrakX \mathfrak{X} -crown of a group G. Of particular importance is the case where all groups in \mathfrakX \mathfrak{X} have equal socle length.  相似文献   

6.
We investigate splitting number and reaping number for the structure (ω) ω of infinite partitions of ω. We prove that \mathfrakrdnon(M),non(N),\mathfrakd{\mathfrak{r}_{d}\leq\mathsf{non}(\mathcal{M}),\mathsf{non}(\mathcal{N}),\mathfrak{d}} and \mathfraksd 3 \mathfrakb{\mathfrak{s}_{d}\geq\mathfrak{b}} . We also show the consistency results ${\mathfrak{r}_{d} > \mathfrak{b}, \mathfrak{s}_{d} < \mathfrak{d}, \mathfrak{s}_{d} < \mathfrak{r}, \mathfrak{r}_{d} < \mathsf{add}(\mathcal{M})}${\mathfrak{r}_{d} > \mathfrak{b}, \mathfrak{s}_{d} < \mathfrak{d}, \mathfrak{s}_{d} < \mathfrak{r}, \mathfrak{r}_{d} < \mathsf{add}(\mathcal{M})} and ${\mathfrak{s}_{d} > \mathsf{cof}(\mathcal{M})}${\mathfrak{s}_{d} > \mathsf{cof}(\mathcal{M})} . To prove the consistency \mathfrakrd < add(M){\mathfrak{r}_{d} < \mathsf{add}(\mathcal{M})} and \mathfraksd < cof(M){\mathfrak{s}_{d} < \mathsf{cof}(\mathcal{M})} we introduce new cardinal invariants \mathfrakrpair{\mathfrak{r}_{pair}} and \mathfrakspair{\mathfrak{s}_{pair}} . We also study the relation between \mathfrakrpair, \mathfrakspair{\mathfrak{r}_{pair}, \mathfrak{s}_{pair}} and other cardinal invariants. We show that cov(M),cov(N) £ \mathfrakrpair £ \mathfraksd,\mathfrakr{\mathsf{cov}(\mathcal{M}),\mathsf{cov}(\mathcal{N})\leq\mathfrak{r}_{pair}\leq\mathfrak{s}_{d},\mathfrak{r}} and \mathfraks £ \mathfrakspairnon(M),non(N){\mathfrak{s}\leq\mathfrak{s}_{pair}\leq\mathsf{non}(\mathcal{M}),\mathsf{non}(\mathcal{N})} .  相似文献   

7.
Let V be a 2m-dimensional symplectic vector space over an algebraically closed field K. Let $ \mathfrak{B}_n^{(f)} Let V be a 2m-dimensional symplectic vector space over an algebraically closed field K. Let \mathfrakBn(f) \mathfrak{B}_n^{(f)} be the two-sided ideal of the Brauer algebra \mathfrakBn( - 2m ) {\mathfrak{B}_n}\left( { - 2m} \right) over K generated by e 1 e 3⋯ e 2f-1 where 0 ≤ f ≤ [n/2]. Let HTf ?n \mathcal{H}\mathcal{T}_f^{ \otimes n} be the subspace of partial-harmonic tensors of valence f in V n . In this paper we prove that dimHTf ?n \mathcal{H}\mathcal{T}_f^{ \otimes n} and dim \textEn\textdK\textSp(V)( V ?n \mathord
/ \vphantom V ?n V ?n V ?n\mathfrakBn(f) ) {\text{En}}{{\text{d}}_{K{\text{Sp}}(V)}}\left( {{{{V^{ \otimes n}}} \mathord{\left/{\vphantom {{{V^{ \otimes n}}} {{V^{ \otimes n}}}}} \right.} {{V^{ \otimes n}}}}\mathfrak{B}_n^{(f)}} \right) are both independent of K, and the natural homomorphism from \mathfrakBn( - 2m ) \mathord/ \vphantom ( - 2m ) \mathfrakBn(f) \mathfrakBn(f) {\mathfrak{B}_n}{{\left( { - 2m} \right)} \mathord{\left/{\vphantom {{\left( { - 2m} \right)} {\mathfrak{B}_n^{(f)}}}} \right.} {\mathfrak{B}_n^{(f)}}} to \textEn\textdK\textSp(V)( V ?n \mathord/ \vphantom V ?n V ?n V ?n\mathfrakBn(f) ) {\text{En}}{{\text{d}}_{K{\text{Sp}}(V)}}\left( {{{{V^{ \otimes n}}} \mathord{\left/{\vphantom {{{V^{ \otimes n}}} {{V^{ \otimes n}}}}} \right.} {{V^{ \otimes n}}}}\mathfrak{B}_n^{(f)}} \right) is always surjective. We show that HTf ?n \mathcal{H}\mathcal{T}_f^{ \otimes n} has a Weyl filtration and is isomorphic to the dual of V ?n\mathfrakBn(f) \mathord/ \vphantom V ?n\mathfrakBn(f) V V ?n\mathfrakBn( f + 1 ) {{{{V^{ \otimes n}}\mathfrak{B}_n^{(f)}} \mathord{\left/{\vphantom {{{V^{ \otimes n}}\mathfrak{B}_n^{(f)}} V}} \right.} V}^{ \otimes n}}\mathfrak{B}_n^{\left( {f + 1} \right)} as an \textSp(V) - ( \mathfrakBn( - 2m ) \mathord/ \vphantom ( - 2m ) \mathfrakBn( f + 1 ) \mathfrakBn( f + 1 ) ) {\text{Sp}}(V) - \left( {{\mathfrak{B}_n}{{\left( { - 2m} \right)} \mathord{\left/{\vphantom {{\left( { - 2m} \right)} {\mathfrak{B}_n^{\left( {f + 1} \right)}}}} \right.} {\mathfrak{B}_n^{\left( {f + 1} \right)}}}} \right) -bimodule. We obtain an \textSp(V) - \mathfrakBn {\text{Sp}}(V) - {\mathfrak{B}_n} -bimodules filtration of V n such that each successive quotient is isomorphic to some ?( l) ?zg,l\mathfrakBn \nabla \left( \lambda \right) \otimes {z_{g,\lambda }}{\mathfrak{B}_n} with λ ⊢ n 2g, ℓ(λ)≤m and 0 ≤ g ≤ [n/2], where ∇(λ) is the co-Weyl module associated to λ and z g is an explicitly constructed maximal vector of weight λ. As a byproduct, we show that each right \mathfrakBn {\mathfrak{B}_n} -module zg,l\mathfrakBn {z_{g,\lambda }}{\mathfrak{B}_n} is integrally defined and stable under base change.  相似文献   

8.
Let U( \mathfrakg,e ) U\left( {\mathfrak{g},e} \right) be the finite W-algebra associated with a nilpotent element e in a complex simple Lie algebra \mathfrakg = \textLie(G) \mathfrak{g} = {\text{Lie}}(G) and let I be a primitive ideal of the enveloping algebra U( \mathfrakg ) U\left( \mathfrak{g} \right) whose associated variety equals the Zariski closure of the nilpotent orbit (Ad G) e. Then it is known that I = \textAn\textnU( \mathfrakg )( Qe ?U( \mathfrakg,e )V ) I = {\text{An}}{{\text{n}}_{U\left( \mathfrak{g} \right)}}\left( {{Q_e}{ \otimes_{U\left( {\mathfrak{g},e} \right)}}V} \right) for some finite dimensional irreducible U( \mathfrakg,e ) U\left( {\mathfrak{g},e} \right) -module V, where Q e stands for the generalised Gelfand–Graev \mathfrakg \mathfrak{g} -module associated with e. The main goal of this paper is to prove that the Goldie rank of the primitive quotient U( \mathfrakg )
/ I {{{U\left( \mathfrak{g} \right)}} \left/ {I} \right.} always divides dim V. For \mathfrakg = \mathfraks\mathfrakln \mathfrak{g} = \mathfrak{s}{\mathfrak{l}_n} , we use a theorem of Joseph on Goldie fields of primitive quotients of U( \mathfrakg ) U\left( \mathfrak{g} \right) to establish the equality \textrk( U( \mathfrakg ) / I ) = dimV {\text{rk}}\left( {{{{U\left( \mathfrak{g} \right)}} \left/ {I} \right.}} \right) = \dim V . We show that this equality continues to hold for \mathfrakg \ncong \mathfraks\mathfrakln \mathfrak{g} \ncong \mathfrak{s}{\mathfrak{l}_n} provided that the Goldie field of U( \mathfrakg ) / I {{{U\left( \mathfrak{g} \right)}} \left/ {I} \right.} is isomorphic to a Weyl skew-field and use this result to disprove Joseph’s version of the Gelfand–Kirillov conjecture formulated in the mid-1970s.  相似文献   

9.
Let \mathfrakg \mathfrak{g} be a reductive Lie algebra and \mathfrakk ì \mathfrakg \mathfrak{k} \subset \mathfrak{g} be a reductive in \mathfrakg \mathfrak{g} subalgebra. A ( \mathfrakg,\mathfrakk \mathfrak{g},\mathfrak{k} )-module M is a \mathfrakg \mathfrak{g} -module for which any element mM is contained in a finite-dimensional \mathfrakk \mathfrak{k} -submodule of M. We say that a ( \mathfrakg,\mathfrakk \mathfrak{g},\mathfrak{k} )-module M is bounded if there exists a constant C M such that the Jordan-H?lder multiplicities of any simple finite-dimensional \mathfrakk \mathfrak{k} -module in every finite-dimensional \mathfrakk \mathfrak{k} -submodule of M are bounded by C M . In the present paper we describe explicitly all reductive in \mathfraks\mathfrakln \mathfrak{s}{\mathfrak{l}_n} subalgebras \mathfrakk \mathfrak{k} which admit a bounded simple infinite-dimensional ( \mathfraks\mathfrakln,\mathfrakk \mathfrak{s}{\mathfrak{l}_n},\mathfrak{k} )-module. Our technique is based on symplectic geometry and the notion of spherical variety. We also characterize the irreducible components of the associated varieties of simple bounded ( \mathfrakg,\mathfrakk \mathfrak{g},\mathfrak{k} )-modules.  相似文献   

10.
By using the concept of weight graph associated to nonsplit complex nilpotent Lie algebras \mathfrakg\mathfrak{g}, we find necessary and sufficient conditions for a semidirect product \mathfrakg?? Ti\mathfrak{g}\overrightarrow{\oplus } T_{i} to be two-step solvable, where $T_{i}TT over \mathfrakg\mathfrak{g} which induces a decomposition of \mathfrakg\mathfrak{g} into one-dimensional weight spaces without zero weights. In particular we show that the semidirect product of such a Lie algebra with a maximal torus of derivations cannot be itself two-step solvable. We also obtain some applications to rigid Lie algebras, as a geometrical proof of the nonexistence of two-step nonsplit solvable rigid Lie algebras in dimensions n\geqslant 3n\geqslant 3.  相似文献   

11.
We generalize a result of Kostant and Wallach concerning the algebraic integrability of the Gelfand-Zeitlin vector fields to the full set of strongly regular elements in \mathfrakg\mathfrakl \mathfrak{g}\mathfrak{l} (n, ℂ). We use decomposition classes to stratify the strongly regular set by subvarieties XD {X_\mathcal{D}} . We construct an étale cover [^(\mathfrakg)]D {\hat{\mathfrak{g}}}_\mathcal{D} of XD {X_\mathcal{D}} and show that XD {X_\mathcal{D}} and [^(\mathfrakg)]D {\hat{\mathfrak{g}}}_\mathcal{D} are smooth and irreducible. We then use Poisson geometry to lift the Gelfand-Zeitlin vector fields on XD {X_\mathcal{D}} to Hamiltonian vector fields on [^(\mathfrakg)]D {\hat{\mathfrak{g}}}_\mathcal{D} and integrate these vector fields to an action of a connected, commutative algebraic group.  相似文献   

12.
Let (R,\mathfrak m){(R,\mathfrak m)} be a noetherian, local ring with completion [^(R)]{\hat{R}} . We show that R ì [^(R)]{R \subset \hat{R}} satisfies the condition Going up if and only if there exists to every artinian R-module M with AnnR(M) ì \mathfrakp{{\rm Ann}_R(M) \subset \mathfrak{p}} a submodule U ì M{U \subset M} with AnnR(U)=\mathfrakp.{{\rm {Ann}}_R(U)=\mathfrak{p}.} This is further equivalent to R being formal catenary, to α(R) = 0 and to Hd\mathfrakq/\mathfrakp(R/\mathfrakp)=0{H^d_{\mathfrak{q}/\mathfrak{p}}(R/\mathfrak{p})=0} for all prime ideals \mathfrakp ì \mathfrakq \subsetneq \mathfrakm{\mathfrak{p} \subset \mathfrak{q} \subsetneq \mathfrak{m}} where d = dim(R/\mathfrakp){d = {\rm {dim}}(R/\mathfrak{p})}.  相似文献   

13.
Let \mathfraka \mathfrak{a} be a finite-dimensional Lie algebra and Y( \mathfraka ) Y\left( \mathfrak{a} \right) the \mathfraka \mathfrak{a} invariant subalgebra of its symmetric algebra S( \mathfraka ) S\left( \mathfrak{a} \right) under adjoint action. Recently there has been considerable interest in studying situations when Y( \mathfraka ) Y\left( \mathfrak{a} \right) may be polynomial on index \mathfraka \mathfrak{a} generators, for example if \mathfraka \mathfrak{a} is a biparabolic or a centralizer \mathfrakgx {\mathfrak{g}^x} in a semisimple Lie algebra \mathfrakg \mathfrak{g} .  相似文献   

14.
We consider a relationship between two sets of extensions of a finite finitely additive measure μ defined on an algebra \mathfrakB \mathfrak{B} of sets to a broader algebra \mathfrakA \mathfrak{A} . These sets are the set ex S μ of all extreme extensions of the measure μ and the set H μ of all extensions defined as l(A) = [^(m)]( h(A) ),   A ? \mathfrakA \lambda (A) = \hat{\mu }\left( {h(A)} \right),\,\,\,A \in \mathfrak{A} , where [^(m)] \hat{\mu } is a quotient measure on the algebra \mathfrakB
/ m {{\mathfrak{B}} \left/ {\mu } \right.} of the classes of μ-equivalence and h:\mathfrakA ? \mathfrakB / m h:\mathfrak{A} \to {{\mathfrak{B}} \left/ {\mu } \right.} is a homomorphism extending the canonical homomorphism \mathfrakB \mathfrak{B} to \mathfrakB / m {{\mathfrak{B}} \left/ {\mu } \right.} . We study the properties of extensions from H μ and present necessary and sufficient conditions for the existence of these extensions, as well as the conditions under which the sets ex S μ and H μ coincide.  相似文献   

15.
Let \mathfrakX{\mathfrak{X}} be a class of groups. A group G is called a minimal non- \mathfrakX{\mathfrak{X}}-group if it is not an \mathfrakX{\mathfrak{X}}-group but all of whose proper subgroups are \mathfrakX{\mathfrak{X}}-groups. In [16], Xu proved that if G is a soluble minimal non-Baer-group, then G/G ′′ is a minimal non-nilpotent-group which possesses a maximal subgroup. In the present note, we prove that if G is a soluble minimal non-(finite-by-Baer)-group, then for all integer n ≥ 2, G n (G′) is a minimal non-(finite-by-abelian)-group.  相似文献   

16.
Let R be a noetherian ring, \mathfraka{\mathfrak{a}} an ideal of R, and M an R-module. We prove that for a finite module M, if Hi\mathfraka(M){{\rm H}^{i}_{\mathfrak{a}}(M)} is minimax for all i ≥ r ≥ 1, then Hi\mathfraka(M){{\rm H}^{i}_{\mathfrak{a}}(M)} is artinian for i ≥ r. A local–global principle for minimax local cohomology modules is shown. If Hi\mathfraka(M){{\rm H}^{i}_{\mathfrak{a}}(M)} is coatomic for i ≤ r (M finite) then Hi\mathfraka(M){{\rm H}^{i}_{\mathfrak{a}}(M)} is finite for i ≤ r. We give conditions for a module which is locally minimax to be a minimax module. A non-vanishing theorem and some vanishing theorems are proved for local cohomology modules.  相似文献   

17.
18.
In this paper, it is shown that the dual [(\textQord)\tilde]\mathfrakA \widetilde{\text{Qord}}\mathfrak{A} of the quasiorder lattice of any algebra \mathfrakA \mathfrak{A} is isomorphic to a sublattice of the topology lattice á( \mathfrakA ) \Im \left( \mathfrak{A} \right) . Further, if \mathfrakA \mathfrak{A} is a finite algebra, then [(\textQord)\tilde]\mathfrakA @ á( \mathfrakA ) \widetilde{\text{Qord}}\mathfrak{A} \cong \Im \left( \mathfrak{A} \right) . We give a sufficient condition for the lattices [(\textCon)\tilde]\mathfrakA\text, [(\textQord)\tilde]\mathfrakA \widetilde{\text{Con}}\mathfrak{A}{\text{,}} \widetilde{\text{Qord}}\mathfrak{A} , and á( \mathfrakA ) \Im \left( \mathfrak{A} \right) . to be pairwise isomorphic. These results are applied to investigate topology lattices and quasiorder lattices of unary algebras.  相似文献   

19.
Let G be a semisimple linear algebraic group over \mathbbC \mathbb{C} without G 2-factors, B a Borel subgroup of G and TB a maximal torus. The flag variety G/B is a projective G-homogeneous variety whose tangent space at the identity coset is isomorphic, as a B-module, to \mathfrakg
/ \mathfrakb {{\mathfrak{g}} \left/ {\mathfrak{b}} \right.} , where \mathfrakg \mathfrak{g} = Lie(G) and \mathfrakb \mathfrak{b} = Lie(B). Recall that if w is an element of the Weyl group W of the pair (G, T), the Schubert variety X(w) in G/B is by definition the closure of the Bruhat cell BwB. In this paper we prove that X(w) is nonsingular if and only if: (1) its Poincaré polynomial is palindromic; and (2) the tangent space TE(X(w)) to the set T-stable curves in X(w) through the identity is a B-submodule of \mathfrakg / \mathfrakb {{\mathfrak{g}} \left/ {\mathfrak{b}} \right.} . The second condition can be interpreted as saying that the roots of (G, T) in the convex hull of a certain set of roots canonically associated to w arise as tangent weights to T-stable curves in X(w) at the identity. A corollary is that X(w) is smooth if and only if X(w -1) is smooth. Condition (2) also gives a pattern avoidance criterion for TE(X(w)) to be B-stable.  相似文献   

20.
A complete Boolean algebra \mathbbB{\mathbb{B}}satisfies property ((h/2p)){(\hbar)}iff each sequence x in \mathbbB{\mathbb{B}}has a subsequence y such that the equality lim sup z n = lim sup y n holds for each subsequence z of y. This property, providing an explicit definition of the a posteriori convergence in complete Boolean algebras with the sequential topology and a characterization of sequential compactness of such spaces, is closely related to the cellularity of Boolean algebras. Here we determine the position of property ((h/2p)){(\hbar)}with respect to the hierarchy of conditions of the form κ-cc. So, answering a question from Kurilić and Pavlović (Ann Pure Appl Logic 148(1–3):49–62, 2007), we show that ${``\mathfrak{h}{\rm -cc}\Rightarrow (\hbar)"}${``\mathfrak{h}{\rm -cc}\Rightarrow (\hbar)"}is not a theorem of ZFC and that there is no cardinal \mathfrakk{\mathfrak{k}}, definable in ZFC, such that ${``\mathfrak{k} {\rm -cc} \Leftrightarrow (\hbar)"}${``\mathfrak{k} {\rm -cc} \Leftrightarrow (\hbar)"}is a theorem of ZFC. Also, we show that the set { k: each k-cc c.B.a. has ((h/2p) ) }{\{ \kappa : {\rm each}\, \kappa{\rm -cc\, c.B.a.\, has}\, (\hbar ) \}}is equal to [0, \mathfrakh){[0, \mathfrak{h})}or [0, \mathfrak h]{[0, {\mathfrak h}]}and that both values are consistent, which, with the known equality {k: each c.B.a. having  ((h/2p) ) has the k-cc } = [\mathfrak s, ¥){{\{\kappa : {\rm each\, c.B.a.\, having }\, (\hbar )\, {\rm has\, the}\, \kappa {\rm -cc } \} =[{\mathfrak s}, \infty )}}completes the picture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号