首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
The reaction of 3-formylsalicylic acid with 1,2-bis(o-aminophenylthio)ethane yielded a Schiff base with eight donor centres N2S2O4 of which the inner compartment is of an N2S2O2 type and the outer is of the O2O2 type. The base forms several mononuclear homo- and hetero-dinuclear complexes: e.g. mononuclear CuII, NiII and dinuclear CuII, NiII, UO2 VI complexes. Hetero-dinuclear complexes {[M]M}, where M = the inner metal ion CuII, NiII and M = the outer metal ion PdII, UO2 VI are also reported. The complexes were characterised by elemental analyses, spectral, thermal and magnetic measurements. Dicopper and dinickel complexes exhibit subnormal magnetic moments showing spin pairing between two metal centres, via the phenolato oxygen, whereas other mono-copper and mono-nickel complexes (both mononuclear and hetero-dinuclear) show the expected magnetic behaviour for 1e and 2e, respectively. The e.s.r. spectra of copper complexes also support the above behaviour.  相似文献   

2.
Summary New complexes ofN-2-picolyl-N -phenylthiourea (HPPT) have been prepared employing a number of different divalent metal ion salts. The resultant CoII, NiII, and CuII complexes, which generally involve coordination of HPPT, except for the CuII halides which have a deprotonated ligand, have been characterized by partial elemental analysis, molar conductivity and spectral (i.r., u.v.-vis., and e.s.r.) studies. HPPT is an NN bidentate ligand while the deprotonated form serves as an NNS bridging tridentate ligand. The complexes undergo partial or total decomposition in the solvents in which they are soluble. The compounds [Cu(HPPT)2X2] have resolved g features in their powder spectra indicating that magnetic dilution has occurred.On leave from Mansoura University, Mansoura, Egypt.  相似文献   

3.
New mixed ligand complexes of benzoyldithiocarbazate (H2BDT) have been synthesized and characterized by elemental analyses, spectral studies (i.r., u.v.–vis., mass), thermal analysis and electrical conductivity measurements. The complexes have the general formulae: [M2(BDT)(OX)2] · xH2O; [Co2(BDT)(OX)2(H2O)4]; [M(HBDT)(OX)-(H2O)], [Ni(BDT)(py)2] n and [Ni(BDT)(L)] n where M = MnII, NiII and CuII; BDT = dithiocarbazate dianion; OX = 8-hydroxyquinolinate; x = 1 or 2; M = ZnII or CdII; HBDT = dithiocarbazate anion and L = 2,2-bipyridyl or 1,10-o-phenanthroline. For the [M2(BDT)(OX)2] · xH2O, [Co2(BDT)(OX)2(H2O)4], [Ni(BDT)(py)2] n and [Ni(BDT)(L)] n complexes, benzoyldithiocarbazate acts as a dibasic-tetradentate ligand in the enol form via the enolic oxygen, the hydrazide nitrogens and the thiolate sulphur, while it acts as a monobasic-tridentate ligand in the keto form in the [M(HBDT)(OX)(H2O)] complexes. The thermal behaviour of the complexes has been studied by t.g.–d.t.g. techniques. Kinetic parameters of the thermal decomposition process have been computed by Coats–Redfern and Horowitz–Metzger methods. It is obvious that the thermal decomposition in the complexes occurs directly at the metal–ligand bonds except for the ZnII and CdII complexes in which decomposition seems to be at a point in the benzoyldithiocarbazate moiety. From the calculated kinetic data it can be concluded that the dehydration processes in all complexes have been described as phase-boundary controlled reactions. The activation energy values reveal that the thermal stabilities of the homobimetallic complexes lie in the order: MnII < NiII < CoII, while the monomeric CdII complex has more enhanced thermal stability than the ZnII complex.  相似文献   

4.
A new potential tetradentate ligand, N-nicotinoyl-N-2-furanthiocarbohydrazide (H2Nfth), and its complexes with VOIV, MnII, FeII,III, CoII, NiII, CuII and ZnII have been prepared and characterized by elemental analyses, magnetic susceptibility measurements, u.v.–vis, i.r., n.m.r., ES+ and FAB mass spectral data. The room temperature e.s.r spectra of the VOIV and FeIII complexes yield g values, characteristic of octahedral complexes. The Mössbauer spectra of [Fe(HNfth)2] and [Fe2(Nfth)3] at room temperature and at 78 K suggest the presence of high-spin iron(II) and iron(III), respectively. The complexes are electrically insulating at room temperature, however, their conductivities increase as the temperature increases from 333–383 K, with a band gap of 0.46–0.77 eV, indicating their semiconducting behaviour. H2Nfth and its soluble complexes have been screened against several bacteria and fungi.  相似文献   

5.
Novel terdentate neutral complexes of CuII, NiII, CoII, MnII, ZnII, CdII, HgII, VOII, ZrOII and UO2 II have been prepared using a Schiff base derived from 1-phenyl-2,3-dimethyl-4-aminopyrazol-5-one (4-aminoantipyrine) and acetoacetanilide. The structural features of the chelates have been confirmed by microanalytical data, i.r., u.v.–vis., 1H-n.m.r., e.s.r. and mass spectral techniques. Electronic absorption and i.r. spectra of the complexes indicate an octahedral geometry around the central metal ion, except for the VOII and ZrOII complexes which show square pyramidal geometry. The monomeric and neutral nature of the complexes are confirmed from their magnetic susceptibility and low conductance values. The cyclic voltammogram of the copper complex in MeCN at 300 K shows a quasi-reversible peak for the couple CuII/CuIII at Epc = 0.47 and Epa = 0.61 V versus Ag/AgCl and two irreversible peaks for CuII CuI and CuI Cu0 reduction at Epc = –0.63 and – 0.89 V respectively. The e.s.r. spectra of copper and vanadyl complexes in DMSO solution at 300 K and 77 K were recorded and their salient features are reported. The molecular orbital coefficients (2, 2) were calculated for complexes. The antimicrobial activity of the ligand and its complexes have been extensively studied on microorganisms such as Staphylococcus aureus, Klebsiela pneumoniae, Bacillus subtillis, Escherichia coli, Citrobacter ferundii and Salmonella typhi. Most of the complexes have higher activities than that of the free ligand.  相似文献   

6.
Summary Acetylacetone bis-benzoylhydrazone (PhCONHN=CMe)2 CH2(LH2) and acetylacetone bis-isonicotinoylhydrazone (NC5H4CONHN=CMe)2CH2(LH2) complexes of the types [ML] and [ML] (M = CoII, NiII, CuII or ZnII) have been prepared and characterized. All the complexes are non-electrolytes and the cobalt(II) complexes are lowspin, the nickel(II) complexes are diamagnetic and the copper(II) complexes are paramagnetic. The ligands chelate via two C=N groups and two deprotonated enolate groups. The e.s.r. spectra of the copper(II) complexes indicate a tetragonally distorted dimeric structure. The X-ray diffraction parameters for [CoL] and [NiL] correspond to a tetragonal crystal lattice.  相似文献   

7.
Complexes of N-phthaloylglycinate (N-phthgly) and CoII, NiII, CuII, ZnII and CdII containing imidazole (imi), N-methylimidazole (mimi), 2,2-bipyridyl (bipy) and 1,10-phenanthroline (phen), and tridentate amines such as 2,2,2-terpyridine (terpy) and 2,4,6-(2-pyridyl)s-triazine (tptz), were prepared and characterized by conventional methods, i.r. spectra and by thermogravimetric analysis. For imi and mimi ternary complexes, the general formula [M(imi/mimi)2(N-phthgly)2nH2O, where M = CoII, NiII, CuII and ZnII applies. For CdII ternary complexes with imi, [Cd(imi)3(N-phthgly)2]·2H2O applies. For the bi and tridentate ligands, ternary complexes of the formula [M(L)(N-phthgly)2nH2O were obtained, where M = CoII, NiII, CuII and ZnII; L = bipy, phen, tptz and terpy. In all complexes, N-phthgly acts as a monodentate ligand, coordinating metal ions through the carboxylate oxygen, except for the ternary complexes of CoII, NiII and CuII with mimi and CuII and ZnII with imi, where the N-phthgly acts as a bidentate ligand, coordinating the metal ions through both carboxylate oxygen atoms.  相似文献   

8.
Summary Ternary 1:1:1 complexes of YIII, CoII, NiII, CuII, LaIII, CeIII and UO 2 2+ with N-(2-acetamido)iminodiacetic acid (H2ADA) as primary ligand and salicylic, anthranilic or phthalic acid as secondary ligand are described. The complexes of CoII and CuII were isolated and characterized by microanalysis, molar conductance measurements, thermal analysis, i.r. and u.v.-vis. spectra. The formation constants of the 111 ternary complexes were determined potentiometrically in 20% (w/w) EtOH-H2O at 24 °C. The stabilities of the 111 M n+ :ADA2–:aromatic acid ternary complexes are higher than those of the corresponding 11 M n+ :aromatic acid binary complexes.  相似文献   

9.
A series of mononuclear MnII and MnIV complexes of general formulae [MnL2(NCS)2] (1a1d) and [Mn(L)2(NCS)2] (2a2c) have been prepared where L are Schiff bases obtained by the condensation of pyridine-2-aldehyde with para-alkyl-substituted aniline, and L are the corresponding amide ligands. The room temperature magnetic susceptibility data of (1a–1d) indicate that MnII is in a high spin state. The cyclic voltammograms of (1a–1d) exhibit a one-electron quasi-reversible MnIIMnIII oxidation. A linear correlation has been found when E0[MnIII/MnII] is plotted against Hammett p parameters. X-ray crystallographic data of (1b) shows that the central MnII ion adopts a distorted octahedral geometry with six different Mn–N distances. Upon oxidation of MnII complexes (1b–1d) by H2O2, the corresponding MnIV complexes (2a–2c) were obtained, and the Schiff base ligands were oxidized to the corresponding amides. The lowest energy LMCT bands of these MnIV complexes correlate linearly with Hammett p parameters. The redox behavior of the MnIV complexes has been investigated by cyclic voltammetry. E.p.r. spectra of the MnII and MnIV complexes are also reported.  相似文献   

10.
Summary Novel N2S2 macrocyclic ligands, L and L [SS-diethyl(1,3-diaminopropane) dithiocarbamate], [SS-cyclohexyl spiro-(1,3-diaminopropane) dithiocarbamate] and their complexes with MnII, FeII, CoII, NiII and CuII have been characterized by elemental analyses, conductivity measurements, i.r., u.v.-vis. and n.m.r. spectra. The divalent transition metal complexes appear to be square planar and achieve octahedral geometry when treated with bis(trimethylsilyl)-amine to yield new heterobimetallic complexes.  相似文献   

11.
Coordination complexes of transition metal cations (CoII, NiII, CuII and ZnII) containing coumarilate and N,N′-diethylnicotinamide were synthesized. The structural characterization and thermal behaviour analysis of novel samples synthesized were conducted through elemental analysis, magnetic susceptibility, solid-state UV–Vis, direct and injection probe mass spectra, FTIR spectra, thermoanalytic TG-DTG/DTA and single crystal X-ray diffraction methods. The structural details of single crystals of [Co(dena)2(H2O)4](coum)2 (I) and [Cu(coum)2(dena)2(H2O)2] (III) complexes were resolved completely. Moreover, the results of analysis obtained for [Ni(coum)2(dena)2(H2O)2] (II) and [Zn(dena)2(H2O)4](coum)2 (IV) complexes were interpreted considering the samples with crystal structures defined and made assumptions about the structural details. It was determined that the complex of CoII metal cation has salt-type structure and the coordination number of metal is accomplished to six as the sum of 4 mol of water and also 2 mol of N,N′-diethylnicotinamide ligands in trans position located within the coordination sphere. It was observed that 2 mol of coumarilate anions are located outside the coordination sphere and have stabilized to the charge (2+) of metal. The CuII complex has totally molecular structure, and the coordination sphere of metal cation was 6 as the sum of 2 mol of water, 2 mol of N,N′-diethylnicotinamide and 2 mol of monoanionic monodentate coumarilate ligands. All ligands have been located in –trans position. The geometry of both complex structures is distorted octahedral. It is assumed that the NiII complex structure is isostructural with CuII complex structure and also does ZnII complex with CoII structure. It was determined that the decomposition products obtained from thermal analysis are the oxides of related metal cations.  相似文献   

12.
Reactions of hydroxyethyl cellulose (HEC) with Cr III, NiII, CoII, or CuII chlorides in aqueous medium yielded complexes with formulae [M(HEC)Cl m .n H 2O], wherem =1 or 2 and n=2 or 3. HEC acted as a uninegatively charged bidentate ligand in the case of CrIII and NiII, and as a neutral ligand in the case of CoII and CuII complexes. The spectra showed that the binding sites in CrIII and NiII complexes were the ether oxygen between two ethoxyl groups and the oxygen of the hydroxyl group; while in the CoII and CuII complexes the binding sites were the oxygen of ethoxyl groups and the primary alcoholic O atom of glucopyranose rings. These complexes would most likely exhibit octahedral geometry with CrIII, NiII, and CoII, but square planar configuration in the case of the CuII complex. The ligand parameters of the CrIII, NiII, and CoII metal chelates were calculated in different solvents and at different temperatures. The thermal stability of the above complexes was investigated and the overall thermodynamics functions G0, H0, and S0, associated with complex formation, were estimated.  相似文献   

13.
The formation equilibria for the binary complexes of CoII, NiII, CuII, ZnII, CdII, MnII, PbII, ThIV, UO2II, and CeIII with tricine and for the ternary complexes involving some -amino acids (glycine, -alanine, proline, serine, asparagine, and aspartic acid) were investigated using pH-metric technique. The formation of binary and ternary complexes was inferred from the pH-metric titration curves. It was deduced that tricine acts as a primary ligand in the ternary complexes involving the monocarboxylic amino acids (glycine, -alanine, proline, serine, and asparagine), whereas it behaves as a secondary ligand in the ternary systems containing the dicarboxylic aspartic acid. The ternary complex formation was found to take place in a stepwise manner. The stability constants of the complexes formed in aqueous solutions were determined potentiometrically under the experimental conditions (t=25°C, I=0.1moldm–3 NaNO3). The order of stability of the ternary complexes in terms of the nature of the amino acids is investigated and discussed. The values of log K for the ternary complexes have been evaluated and discussed. Evaluation of the effects of ionic strength and temperature of the medium on the stability of the ternary system MII-tricine--alanine (MII=CoII, NiII, and CuII) has been studied. The thermodynamic parameters were calculated and discussed.  相似文献   

14.
Neutral tetradentate chelate complexes of CuII, NiII, CoII, MnII, ZnII and VOII have been prepared in EtOH using Schiff bases derived from acetoacetanilido-4-aminoantipyrine and 2-aminophenol/2-aminothiophenol. Microanalytical data, magnetic susceptibility, i.r., u.v.–vis., 1H-n.m.r. and e.s.r. spectral techniques were used to confirm the structures of the chelates. Electronic absorption and i.r. spectra of the complexes suggest a square-planar geometry around the central metal ion, except for VOII and MnII complexes which have square-pyramidal and octahedral geometry respectively. The cyclic voltammetric data for the CuII complexes in MeCN show two waves for copper(II) copper(III) and copper(II) copper(I) couples, whereas the VOII complexes in MeCN show two waves for vanadium(IV) vanadium(V) and vanadium(IV) vanadium(III) couples. The e.s.r. spectra of the CuII, VOII and MnII complexes were recorded in DMSO solution and their salient features reported. The in vitro antimicrobial activity of the investigated compounds was tested against the microorganisms such as Salmonella typhi, Staphylococcus aureus, Klebsiella pneumoniae, Bacillus subtilis, Shigella flexneri, Pseudomonas aeruginosa, Aspergillus niger and Rhizoctonia bataicola. Most of the metal chelates have higher antimicrobial activity than the free ligands.  相似文献   

15.
Summary The electronic and vibrational spectra of NiII and PdII complexes with thiobenzamide, L, are discussed. L acts as a sulphur donor ligand. The PdII compounds and (NiL4)(ClO4)2 are square planar. PdL2Cl2 has acis-structure, while PdL2X2 (X=Br or I) istrans; NiL4Cl2 istrans-octahedral. The i.r. bands due to(M.S) and(MX) have been assigned. The influence of the anions on the properties of the complexes, both in solution and in the solid state, is discussed.  相似文献   

16.
Summary CoII chloro complexes were studied in MeOH at 25 °C and at constant ionic strength of 1 mol dm–3. Formation of three complexes is postulated for which the overall stability constants are calculated: log 1 = 1.2, log 2 = 1.7 and log 3 = 1.4. The electronic spectra and the formation curves of the identified species are presented for the first time in this medium. The results are compared with those obtained in other alcohols and increasing stability with increasing molecular weight of the solvents is established. Further comparative study showed that the maximum stability of the chloro complexes is found with the CuII ion as the central atom. This confirms the Irving-Williams order of stabilities for the first transition metal complexes in this alcoholic medium and the result is explained in terms of the second ionization potential of the elements.  相似文献   

17.
Mononuclear [M(hfacac)2(H2biim)] complexes, where M = MnII, FeII, CoII, NiII, CuII or ZnII, hfacac = hexafluoroacetylacetonate, H2biim = 2,2-biimidazole; dinuclear K2[M2(acac)4(-biim)] (M = CuII or ZnII) and tetranuclear K2[M4(acac)8( 4-biim)] (M = CoII or NiII) complexes have been prepared and characterized by chemical analysis, conductance measurements, i.r., electronic and e.p.r. spectroscopies and by magnetic susceptibility measurements (in the 2–300 K range). MnII, FeII and CoII are in a high spin state. The e.p.r. spectra of CuII and MnII compounds have been recorded.  相似文献   

18.
A new series of hexacoordinate cobalt(II), nickel(II) and copper(II) complexes of 5-(2-carboxyphenylazo)-2-thiohydantoin HL having formulae [LM(OAc)(H2O)2] · nH2O (M = CoII, CuII and NiII), [LMCl(H2O)2] · nH2O (M = CoII and NiII), [LCuCl(H2O)]2 · 2H2O, [LCu(H2O)3](ClO4) and [LCu(HSO4)(H2O)2] were isolated and characterized by elemental analyses, molar conductivities and magnetic susceptibilities, and by i.r., electronic and e.s.r. spectral measurements, as well as by thermal (t.g. and d.t.g.) analyses. The i.r. spectra indicate that the ligand HL behaves as a monobasic tridentate towards the three divalent metal ions via an azo-N, carboxylate-O and thiohydantoin-O atom. The magnetic moments and electronic spectral data suggest an octahedral geometry for CoII complexes, distorted octahedral geometry for both NiII and CuII complexes with a dimeric structure for [LCuCl(H2O)]2 · 2H2O through bridged chloro ligands. The X-band e.s.r. spectra reveal an axial symmetry for the copper(II) complexes with unsymmetrical Ms = ± 1 signal and G-parameter less than four for the dimeric [LCuCl(H2O)]2 · 2H2O. The thermogravimetry (t.g. and d.t.g.) of some complexes were studied; the order and kinetic parameters of their thermal degradation were determined by applying Coats–Redfern method and discussed.  相似文献   

19.
Summary The metal complexes of the type [M(SB)2(H2O)2] and [M(SB)2][where M = MnII, CoII, NiII or CuII, M = ZnII CdII, HgII and PbII and SBH = 2-(2-hydroxyacetophenone)imino-5-(p-anisyl)-1,3,4-oxadiazole] have been prepared and characterised by elemental analyses, thermal analyses, magnetic measurements, electronic and infrared spectral studies. The complexes [M(SB)2(H2O)2] possess octahedral structures, whereas complexes [M(SB)2] are tetrahedral. The crystal field parameters of the CoII and NiII complexes are also calculated.  相似文献   

20.
Summary. The formation equilibria for the binary complexes of CoII, NiII, CuII, ZnII, CdII, MnII, PbII, ThIV, UO2II, and CeIII with tricine and for the ternary complexes involving some -amino acids (glycine, -alanine, proline, serine, asparagine, and aspartic acid) were investigated using pH-metric technique. The formation of binary and ternary complexes was inferred from the pH-metric titration curves. It was deduced that tricine acts as a primary ligand in the ternary complexes involving the monocarboxylic amino acids (glycine, -alanine, proline, serine, and asparagine), whereas it behaves as a secondary ligand in the ternary systems containing the dicarboxylic aspartic acid. The ternary complex formation was found to take place in a stepwise manner. The stability constants of the complexes formed in aqueous solutions were determined potentiometrically under the experimental conditions (t=25°C, I=0.1moldm–3 NaNO3). The order of stability of the ternary complexes in terms of the nature of the amino acids is investigated and discussed. The values of log K for the ternary complexes have been evaluated and discussed. Evaluation of the effects of ionic strength and temperature of the medium on the stability of the ternary system MII-tricine--alanine (MII=CoII, NiII, and CuII) has been studied. The thermodynamic parameters were calculated and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号