首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
注塑成型是重要的塑料成型工艺,成型过程中熔体在模腔中的流动和传热对最终制品的性能和质量有重要的影响,因此,精确预测注塑过程的流动及传热历史,并进一步预测注塑制品的收缩、翘曲和机械性能等性能和质量指标具有重要意义。为了精确地描述成型过程中材料的流动及传热行为,本文针对注塑成型过程的工艺特点,将充填后充填过程作为一个统一的过程,考虑材料可压缩性及相变对充填和后充填过程的影响,建立了充填后充填过程的统一数学模型。采用有限元/有限差分/控制体积混合数值方法,实现了注塑成型充填后充填一体化模拟。数值模拟结果与实验结果的对比,验证了本文模型和算法。  相似文献   

2.
This paper presents a mathematical model for describing approximately the viscoelastic effects in non-Newtonian steady flows through a porous medium. The rheological behaviour of power law fluids is considered in the Maxwell model of elastic behaviour of the fluids. The equations governing the steady flow through porous media are derived and an analytical solution of these equations in the case of a simple flow system is obtained. The conditions for which the viscoelastic effects may become observable from the pressure distribution measurements are shown and expressed in terms of some dimensionless groups. These have been found to be relevant in the evaluation of viscoelastic effects in the steady flow through porous media.  相似文献   

3.
Shock–particle interaction is an important phenomenon. The interaction can be accurately resolved by direct numerical simulations. However, as the length scales of interest are much larger than the particle size in many applications, fully resolving the flow around the particle is impractical. Therefore, rigorous model for momentum and energy exchange in the interaction is very important. Shock–particle interaction is strongly time-dependent, so unsteady mechanisms play important roles in momentum and energy transfer. A model that includes unsteady contributions to force and heating is proposed. The model is used to investigate particle interactions with a planar shock wave and a spherical shock wave. The peak values and the net effects of unsteady contributions are used to measure their importance. The results show the peak values of unsteady contributions are much larger than the quasi-steady ones for a wide range of particle parameters. The net effects of unsteady contributions are important when the particle-to-gas density ratio is small. For the flow behind the spherical shock is unsteady and non-uniform, unsteady contributions have long-time influence on the particle evolution.  相似文献   

4.
张珩  柳兆荣 《力学季刊》1993,14(3):6-14
导管在循环生理学和临床医学中已得到广泛的应用。血管中介入导管后必然会影响测量的准确性和受检者的正常生理状态。许多学者讨论过导管的介入对压力测量结果的影响,但还未见有讨论导管介入对正常生理状态影响的文章报导。本文基于动脉中血液流的刚性管分析模型,从理论上讨论了血流量和纵向阻抗等生理状态参数在导管介入前后的变化情况,为进一步全面分析导管介入对动脉中血液脉动流的影响提供了理论基础。  相似文献   

5.
The paper is focused on the study of fully turbulent channel flows, using Large Eddy Simulations (LES), in order to address the effects of adverse pressure gradient regions. Analyses of the effects of streak instabilities, which have been shown to be relevant in such regions, are extended to moderate Reynolds numbers. The work considers two different channel geometries in order to further separate influences from wall curvature, flow separation and adverse pressure gradients. Turbulent kinetic energy and Reynolds stress budgets are investigated at separation and re-attachment points. The numerical approach used in the present work is based on the incompressible Navier–Stokes equations, which are solved by a pseudo-spectral methodology for structured grids. Wall-resolved LES calculations are performed using the WALE subgrid scale model. The study shows that the streak instability mechanism persists at higher Reynolds numbers with and without wall curvature in the adverse pressure gradient regions. Moreover, the observed effects are also present regardless of the existence of flow separation regions. Finally, the study of turbulent kinetic energy budgets indicates that, independently of the flow condition, there are well-defined patterns for such turbulent properties at separation and re-attachment points.  相似文献   

6.
ATHREE-FLUIDMODELOFTHESAND-DRIVENFLOW¥(刘大有,董飞)LiuDayou;DongFei(InstituteofMechanics,AcademiaSinica,Beijing100080,P.R.China)Abs...  相似文献   

7.
Gas–solid flows occurring on very small spatial scales (of the order of micro and nanometres) are of great relevance in a number of industrial applications. It is currently not well established how particle motion and filtration are affected by non-isothermal conditions at such scales. Furthermore, when the particle size is comparable to the mean free path of the gas, rarefaction effects become important. In the present work we investigate the effects of heat transfer and non-isothermal conditions on the motion of small particles in rarefied flow. For that purpose, a suitable framework is developed here as a generic multiphase DNS method for rarefied flows. The resulting model is valid for low particle Reynolds number flows, irrespective of the Biot number, and for particle Knudsen numbers up to unity in unbounded flow. Using this model, we show that there is different settling behaviour of particles with an internal heat source in rarefied and continuum cases of the carrier gas respectively. It is shown that the chances for thermal levitation and/or lifting up of a particle due to buoyancy effects are significantly reduced under rarefied conditions.  相似文献   

8.
罗健  王智慧 《力学学报》2022,54(1):83-93
新型近空间高超声速飞行器大多具有尖头薄翼的外形,驻点下游机身附近的强剪切流动及气动加热具有显著的非平衡特征.由于加热总量预估和实验测热数据辨识的需要,工程上越来越关注强剪切非平衡流动及气动加热预测问题.本文结合理论建模和直接模拟蒙特卡洛数值模拟,研究了振动非平衡条件下的可压缩库埃特流动的气动力/热问题.首先基于参考温度...  相似文献   

9.
关于二相流、多相流、多流体模型和非牛顿流等概念的探讨   总被引:10,自引:0,他引:10  
刘大有 《力学进展》1994,24(1):66-74
本文分析了单相流、二相流和多相流等概念上的差异,也分析了单流体模型、双流体模型和多流体模型等概念上的差异,指出前面三种概念是按流动介质的客观物理构成划分的,而后者是按主观采用的研究方法划分的.目前这些概念在使用中存在一些混乱,如二相流与多相流,多相流与多流体模型等.本文还研究了扩散模型、非牛顿流模型和颗粒流模型等,指出前两种模型在分类上属于单流体模型,分析了非牛顿流模型、扩散模型和双(多)流体模型的特点和应用范围,最后,以泥石流为例讨论了以上概念的应用.   相似文献   

10.
11.
对分层大气山体绕流的流动模式及扩散输移特性进行了数值模拟。采用隐式时间离散方法在贴体网格系统下求解雷诺平均的N-S方程,计算结果描述出大气流动的特征,证实了分层(以Froude数为特征参数,定义为F=U/NH,U为来流风速,N为Brunt-Vaisala频率,H为山体高度)变化对山体绕流流态的影响。数值结果表明:当Froude数大于4.0时,山体绕流的流动不再依赖于大气分层的变化。当Froude数介于4.0和1.0之间时,流场中出现了Lee波,并随着Froude数的进一步减小,流动分离发生及Lee波破碎现象。同时模型也预测了在各种流动模式下大气中夹杂着的污染物绕山体的传输特性,表明大气的分层现象对污染物的分布有着非常重要的影响。  相似文献   

12.
In this article, we consider a two-phase flow model in a heterogeneous porous column. The medium consists of many homogeneous layers that are perpendicular to the flow direction and have a periodic structure resulting in a one-dimensional flow. Trapping may occur at the interface between a coarse and a fine layer. Assuming that capillary effects caused by the surface tension are in balance with the viscous effects, we apply the homogenization approach to derive an effective (upscaled) model. Numerical experiments show a good agreement between the effective solution and the averaged solution taking into account the detailed microstructure.  相似文献   

13.
A nonlinear time-domain simulation model for predicting two-dimensional vortex-induced vibration (VIV) of a flexibly mounted circular cylinder in planar and oscillatory flow is presented. This model is based on the utilization of van der Pol wake oscillators, being unconventional since wake oscillators have typically been applied to steady flow VIV predictions. The time-varying relative flow–cylinder velocities and accelerations are accounted for in deriving the coupled hydrodynamic lift, drag and inertia forces leading to the cylinder cross-flow and in-line oscillations. The system fluid–structure interaction equations explicitly contain the time-dependent and hybrid trigonometric terms. Depending on the Keulegan–Carpenter number (KC) incorporating the flow maximum velocity and excitation frequency, the model calibration is performed, entailing a set of empirical coefficients and expressions as a function of KC and mass ratio. Parametric investigations in cases of varying KC, reduced flow velocity, cylinder-to-flow frequency ratio and mass ratio are carried out, capturing some qualitative features of oscillatory flow VIV and exploring the effects of system parameters on response prediction characteristics. The model dependence of hydrodynamic coefficients on the Reynolds number is studied. Discrepancies and limitations versus advantages of the present model with different feasible solution scenarios are illuminated to inform the implementation of wake oscillators as a computationally efficient prediction model for VIV in oscillatory flows.  相似文献   

14.
The deep-mining coal seam impacted by high in situ stress, where Klinkenberg effects for gas flow were very obvious due to low gas permeability, could be regarded as a porous and tight gas-bearing media. Moreover, the Klinkenberg effects had a significant effect on gas flow behavior of deep-mining coal seam. Based on the gas flow properties of deep-mining coal seams affected by in situ stress field, geothermal temperature field and geo-electric field, a new mathematical model of coalbed gas flow, which reflected the impact of Klinkenberg effects on coalbed gas flow properties in multi-physical fields, was developed by establishing the flow equation, state equation, and continuity equation and content equation of coalbed gas. The analytic solution was derived for the model of one-dimensional steady coalbed gas flow with Klinkenberg effects affected by in situ stress field and geothermal temperature field, and a sensitivity analysis of its physical parameters was carried out by comparing available analytic solutions and the measured values. The results show that the analytic solutions of this model of coalbed gas flow with Klinkenberg effects are closer to the measured values compared to those without Klinkenberg effects, and this model can reflect more accurately gas flow of deep-mining coal seams. Moreover, the analytic solution of this model is more sensitive to the change of Klinkenberg factor b and temperature grad G than depth h.  相似文献   

15.
A stochastic approach for modeling transient unsaturated flow in large-scale spatially variable soils is developed in order to overcome the problem of limited information about the local details of spatial soil variability. It is assumed that local soil properties are realizations of three-dimensional stationary random fields, and a large-scale model representation is derived by averaging the local governing flow equation over the ensemble of realizations of the underlying soil property random fields. The three-dimensionality of the local flow equations and the nonlinear dependence of the local flow output on the local soil properties are considered. The resulting mean representation (structure) is in the form of a partial differential equation in which averaged or effective model parameters occur. These effective model parameters are evalutated using a quasi-linearized fluctuation equation and a spectral representation of stationary processes. The large-scale model structure considers the large-scale effects of soil variability and have relatively few parameters which should be identifiable from a realistic data set. The general stochastic theory is then applied to the case of flow in stratified soil formations, which is of practical importance in applications such as waste disposal control. An important finding of this study is that spatial variability of the hydraulic soil properties produces significant large-scale effects, such as large-scale hysteresis and anisotropy of the effective parameters. These large-scale effects should be considered in field applications such as for predicting the movement of liquid wastes in the unsaturated zone.  相似文献   

16.
In this paper, the macroscopic equations of mass and momentum are developed and discretized based on the smoothed particle hydrodynamics (SPH) formulation for the interaction at an interface of flow with porous media. The theoretical background of flow through porous media is investigated to highlight the key constraints that should be satisfied, particularly at the interface between the porous media flow and the overlying free flow. The study aims to investigate the derivation of the porous flow equations, computation of the porosity, and treatment of the interfacial boundary layer. It addresses weak assumptions that are commonly adopted for interfacial flow simulation in particle-based methods. As support to the theoretical analysis, a two-dimensional weakly compressible SPH model is developed based on the proposed interfacial treatment. The equations in this model are written in terms of the intrinsic averages and in the Lagrangian form. The effect of particle volume change due to the spatial change of porosity is taken into account, and the extra stress terms in the momentum equation are approximated by using Ergun's equation and the subparticle scale model to represent the drag and turbulence effects, respectively. Four benchmark test cases covering a range of flow scenarios are simulated to examine the influence of the porous boundary on the internal, interface, and external flows. The capacity of the modified SPH model to predict velocity distributions and water surface behavior is fully examined with a focus on the flow conditions at the interfacial boundary between the overlying free flow and the underlying porous media.  相似文献   

17.
表面粗糙度对微细管内气体流动特性的影响   总被引:2,自引:0,他引:2  
采用了表面粗糙度粘性系数模型对微细管内的气体流动进行数值模拟,以研究微管内壁表面粗糙度对微管内气体流动的影响。运用本文改进的表面粗糙度粘性系数模型,数值模拟与实验数据十分吻合。计算结果表明,进出口压力一定时,表面粗糙度对流场的压力、密度及温度分布的影响不大,但是对速度场的影响十分显著,表面粗糙度使气体流动速度减小,并使壁面附近的速度梯度减小,从而使通过管道的气体质量流量减小,在微管内的气体流动中,表面粗糙度的影响是不能被忽略的。  相似文献   

18.
Film thickness distributions in upward vertical air–water annular flow have been determined using planar laser-induced fluorescence (PLIF). Film thickness data are frequently used to estimate interfacial shear and pressure loss. This film roughness concept has been used in a number of models for annular flow of varying complexity. The PLIF data are presently applied to the single-zone interfacial shear correlation of Wallis; the more detailed model of Owen and Hewitt; and the two-zone (base film and waves) model of Hurlburt, Fore, and Bauer. For the present data, these models all under-predict the importance of increasing liquid flow on pressure loss and interfacial shear. Since high liquid flow rates in annular flow induce disturbance wave and entrainment activity, further modeling in these areas is advised.  相似文献   

19.
采用滑移速度壁模型实现了浸入边界方法与壁模型相结合的大涡模拟.本文首先分别采用平衡层模型和非平衡壁模型对周期山状流进行数值模拟,以考查在壁模型中考虑切向压力梯度的作用.数值结果表明,流场的压力对本文所采用的壁模型形式并不敏感,但是考虑切向压力梯度可以显著改进壁面摩擦力的计算结果,并且能够准确的预测强压力梯度区以及分离区内的流动平均统计特性.不考虑压力梯度效应的平衡层模型显著低估了壁面摩擦力的分布,同时无法准确预测分离区内的平均速度剖面.非平衡模型的修正项正比于切向压力梯度和壁面法向距离,因此在强压力梯度区或者网格较粗时,计算得到的平均压力和摩擦力分布以及流动的低阶统计量均与参考的实验和计算结果吻合.在此基础上,通过回转体绕流的大涡模拟考查了该方法用于模拟高雷诺数壁湍流的适用性,非平衡壁模型可以准确地捕捉流动的物理结构并较准确地预测其水动力学特性.结果表明,将浸入边界方法与非平衡滑移速度壁模型相结合的大涡模拟,有望成为数值模拟复杂边界高雷诺数壁湍流的工具.   相似文献   

20.
A flow model is presented for predicting a hydraulic jump in a straight open channel. The model is based on the general 2D shallow water equations in strong conservation form, without artificial viscosity, which is usually incorporated into the flow equations to capture a hydraulic jump. The equations are discretised using the finite volume method. The results are compared with experimental data and available numerical results, and have shown that the present model can provide good results. The model is simple and easy to implement. To demonstrate the potential application of the model, several hydraulic jumps occurring in different situations are simulated, and the predictions are in good agreement with standard solution for open channel hydraulics. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号