首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intermolecular multiple-quantum coherence (iMQC) MR imaging provides a fundamentally different contrast mechanism. It allows probing tissue microstructure by tuning the direction and strength of the correlation gradient. However, iMQC images of a specific quantum-coherence can easily be contaminated by leakage signals from undesired quantum coherences (zero, single, and triple quantum coherence in this work). Using a modified double-quantum CRAZED imaging sequence, we show that signals originating from various coherence orders (M=0, 1, 2, 3) can be predicted in k-space and effectively isolated by means of a four-step phase cycling scheme and judicious choice of flip angles. Finally, preliminary data suggest the method to be able to provide information on trabecular bone architecture such as regional mean trabecular plate separation.  相似文献   

2.
In the COSY Revamped with Asymmetric Z-gradient Echo Detection (CRAZED) experiments, magnetization is modulated by the distant dipolar field (DDF) generated by coherence selection gradient (CSG) commonly in sinusoidal wave-form and results in detectable intermolecular multiple-quantum coherence (iMQC) signal. IMQCs have some attractive features, but their intrinsic weak signal intensity prevents their widespread applications. In this paper, a new phase cycling scheme was applied to obtain intermolecular double-quantum coherence (iDQC) signal. It is found that DDF can arise from nonspherical sample geometry or background inhomogeneous field in the absence of CSGs, which is more efficient than that created from CSGs. The experimental results show that the resulting DDF can refocus the ± iDQC signals simultaneously and thus enhance the signal intensity to about two folds of that from the conventional CRAZED sequence. Theoretical prediction and experiments give coincident results.  相似文献   

3.
Until recently, NMR imaging with intermolecular multiple-quantum coherences (iMQCs) has been based on the acquisition of a single echo. In vivo studies of iMQC image contrast would greatly benefit from a method that could acquire several orders of quantum coherence during the same acquisition. This would enable comparison of the image contrast for various orders and eliminate image coregistration problems between scans. It has previously been demonstrated that multiple orders of iMQC images can be simultaneously acquired of a simple phantom. Here, we examine the technique and its effect on biological tissue, both in vivo and in vitro. First, we establish the effectiveness of the iMQC sequence in vivo using earthworms as specimens. We then further show that the multi-CRAZED sequence enhances detection of next generation (nanoparticle) contrast agents on excised tumor tissue.  相似文献   

4.
In the CRAZED experiment (COSY revamped by asymmetric Z-gradient echo detection, Warren et al.), a spatially anisotropic magnetization distribution is created by application of a magnetic field gradient (strength G, duration tau) which in turn generates a response called the distant dipolar field (DDF). The DDF is a source of intermolecular multiple-quantum coherences (iMQC) which contain information on the distance d=pi/(gammaGtau) between pairs of dipolar-coupled spins. Diffraction-like phenomena may result for periodically structured samples. In this study, we report the observation of diffraction owing to the DDF at 1.5 T using a clinical whole-body tomograph. Based on the semi-classical treatment of the problem by Robyr and Bowtell, diffraction conditions were obtained for a CRAZED-type pulse sequence that selects iMQC of order N. The predicted distinct difference in N=2 and N not equal2 coherences, i.e., a dominant continuous course as a function of tau (N=2) and prominent diffraction peaks otherwise, could be verified in CRAZED experiments in a periodically structured sample selecting coherence orders N=2 and N=3. The diffractive signal component contains information on the geometric structure of the sample. Applications of this technique may permit the detection of changes in composition and geometry of periodic structures.  相似文献   

5.
Intermolecular multiple-quantum coherence (iMQC) is capable of improving NMR spectral resolution using a 2D shearing manipulation method. A pulse sequence termed CT-iDH, which combines intermolecular double-quantum filter (iDQF) with a modified constant-time (CT) scheme, is designed to achieve fast acquisition of high-resolution intermolecular zero-quantum coherences (iZQCs) and intermolecular double-quantum coherences (iDQCs) spectra without strong coupling artifacts. Furthermore, double-absorption lineshapes are first realized in 2D intermolecular multi-quantum coherences (iMQCs) spectra under inhomogeneous fields through a combination of iZQC and iDQC signals to double the resolution without loss of sensitivity. Theoretically the spectral linewidth can be further reduced by half compared to original iMQC high-resolution spectra. Several experiments were performed to test the feasibility of the new method and the improvements are evaluated quantitatively. The study suggests potential applications for in vivo spectroscopy.  相似文献   

6.
To implement all-optical burst-mode clock extraction we adopt a modified terahertz optical asymmetric demultiplexer (MTOAD). The transmittance and reflectance of the MTOAD depend on the input intensity. For the MTOAD, two levels of pulse intensity can be chosen in such a way that while the pulses with similar intensity are reflected for both strong and weak pulses, only the strong pulse transmits. The device is useful, for example, for bit-level clock extraction from a packet, where strong and weak intensity pulses are assigned to ‘1' and ‘0', respectively. When the input optical signal power is fixed to −1.6 dBm and the intensity ratio between ‘1' and ‘0' is varied in the range of 0.2–0.5, the extinction ratio (ER) at the transmitted port is more than 10 dB and a clock amplitude jitter (CAJ) of the bit-level clock at the reflected port is less than 14%. Inversely, when the input power is varied in the range of −6–−1 dBm with fixed intensity ratio of 0.3, more than 11 dB of ER and less than 15% of CAJ are obtained.  相似文献   

7.
The study of rotational and translational diffusion requires the measurement of both T2 and apparent diffusion coefficient (ADC), quantities that are typically measured in separate experiments. The exploitation of echoes generated via multiple coherence transfer pathways offers an opportunity for measuring T2 and ADC values simultaneously in a single experiment. A series of RF pulses can generate multiple echoes via different coherence pathways with each one being uniquely encoded. Here, we demonstrate one pulse sequence that uses an initial theta; RF pulse to generate three coherence orders (C = 0, -1, +1). In the particular version of the method discussed here only two are used (C = 0, +1). Each order is encoded with a different b value from which the ADC is derived. The coherence order echo C = 0 is refocused to quantify T2. The performance of the method--dubbed simultaneous measurement of ADC and relaxation time (SMART)--is demonstrated on a set of samples differing in T2 and ADC achieved by varying the relative volume fractions in mixtures of gadolinium-doped H2O and D2O. The regional SMART derived T2 and ADC agree well with those obtained with conventional double-spin-echo and pulsed gradient spin-echo methods.  相似文献   

8.
A new method for the ultrafast generation of diffusion-weighted images is reported. The technique combines a quick echo split NMR imaging sequence with the principle of Stejskal and Tanner. It allows to determine the diffusion constant with nearly the same accuracy as the conventional spin-echo technique, requiring only a fraction of the time. The determined values for water doped with 1 g Cu(NO3)2 per liter of H2O and pure acetone were Dwater = (1.95 ± 0.02) × 10−9 m2/s and Dacetone = (4.05 ± 0.02) × 10−9 m2/s at 18.5°C. They are in good agreement both with literature and our own reference measurements using a diffusion-weighted spin-echo sequence. In addition, the temperature dependence of Dwater was measured in the range of 18.5–45.9°C and a good correspondence with reported data was found.  相似文献   

9.
Spectral localization using the stimulated-echo acquisition mode (STEAM) is one of the most popular methods in volume-localizedin vivoNMR spectroscopy. The localized volume signal is generated via stimulated echoes from spins excited by three 90° RF pulses, and the conventional STEAM sequence detects the stimulated-echo signal. From an analysis of the STEAM pulse sequence using the coherence transfer pathway formalism, stimulated anti-echoes are also formed by the same pulse sequence, which constitute the other half of the localized signal in the STEAM experiment. A new scheme of pulsed field gradients for the selection of stimulated anti-echoes was proposed, and localized spectroscopy in the stimulated anti-echo selection mode was achieved on a phantom and fromin vivorat brain.  相似文献   

10.
The 1H double-quantum filtered (DQF) NMR and DQF MRI is applied to the joint tissues of rabbits for selective visualization of tendons, menisci and articular cartilage. The 1H DQF NMR selectively filters double-quantum coherence arising from the 1H dipolar interaction of the “bound” water in these tissues. The double-quantum creation time dependency of the DQF signal intensity is determined by the molecular environment of the “bound” water. Therefore, each tissue has a unique creation time at which the DQF signal reaches its maximum intensity, τmax (Achilles tendon: 0.46 ± 0.02 ms, patella: 0.55 ± 0.8 ms, anterior cruciate ligament: 0.60 ± 0.05 ms, meniscus: 0.78 ± 0.02 ms, skin: 0.81 ± 0.07 ms). We have presented the creation-time-contrasted DQF images of the meniscus, patella, foot, and knee joint. Compared with conventional T2*-weighted gradient-echo (GRE) MR images, tendons, ligaments, menisci, and articular cartilage were more clearly seen in the DQF MR images. All these tissues were distinctly discriminated from each other by their creation times. DQF MR images of foot and knee joints can selectively demonstrated tendons, ligaments, and cartilage, which make it easier to understand the complicated anatomic structure of joints. Because the DQF NMR signal intensity and τmax are sensitive to the order structure of the “bound” water, it might be possible to introduce the creation-time dependent-contrast of 1H DQF MR images as a new tool for analyzing the changes in the ordered structure of the tissue.  相似文献   

11.
Intermolecular dipolar interactions between proton and carbon spins can be used to indirectly detect carbon spectra with high sensitivity. In this communication, we present a modified sequence that, in addition to the high sensitivity of heteronuclear intermolecular multiple quantum coherence (iMQC) experiments, retains the line narrowing capability characteristic of homonuclear zero-quantum coherences. We demonstrate that this sequence can be used to obtain high resolution (13)C spectra in the presence of magnetic field inhomogeneities, both for thermal and hyperpolarized samples, and discuss applications to water-hyperpolarized carbon imaging.  相似文献   

12.
We report here an efficient multiple-quantum magic-angle spinning (MQMAS) pulse sequence involving fast amplitude-modulated (FAM) radio-frequency pulses for excitation and conversion of five-quantum (5Q) coherences of spin-5/2 nuclei. The use of a FAM-I type pulse train for the conversion of 5Q into 1Q coherences proves to be easier to implement experimentally than the earlier suggested use of a FAM-II type sequence [J. Magn. Reson. 154 (2002) 280], while delivering at least equal signal enhancement. Results of numerical simulations and experimental 27Al 5QMAS spectra of aluminium acetylacetonate for different excitation and conversion schemes are compared to substantiate these claims. We also demonstrate the feasibility of acquiring 5QMAS spectra of spin-5/2 systems using cogwheel phase cycling [J. Magn. Reson. 155 (2002) 300] to select the desired coherence pathways. A cogwheel phase cycle of only 57 steps is shown to be as effective as the minimum conventional nested 77-step phase cycle.  相似文献   

13.
Most imaging studies using intermolecular multiple-quantum coherences (iMQCs) have focused on the two-spin dipolar interactions--zero and double quantum coherences. Here, we report the results of various experimental studies to assess the feasibility of magnetic resonance microscopy with high-order iMQCs in model systems at 7 and 14 T. Experimental results demonstrated that the iMQC microscopic images with high coherence orders are readily observable at high field and have unique contrast depending on the sample microstructure and coherence order.  相似文献   

14.
A one-dimensional NMR method is presented for measuring the transverse relaxation time, T2,n, of intermolecular multiple quantum coherences (IMQCs) of coherence order n in highly polarized spin systems. The pulse sequence proposed in this paper effectively suppresses the effects of radiation damping, molecular diffusion, inhomogeneity of magnetic field, and variations of dipolar correlation distance, all of which may affect quantitation of T2,n. This pulse sequence can be used to measure not only IMQC transverse relaxation time T2,n(n>1) quickly and directly, but also the conventional transverse relaxation time. Experimental results demonstrate that the quantitative relationship between T2,n(n≥1) and T2 is T2,n≈T2/n. These results will be helpful for understanding the fundamental properties and mechanisms of IMQCs.  相似文献   

15.
Optimized AM/FM pulses are described which excite an arbitrary coherence of a coupled spin system with optimal intensity. These pulses may become important for creating maximum signal intensity in MQC-filtered and polarization-transfer experiments in HRNMR and in vivo spectroscopy. For an AB system, for example, a pure DQC or ZQC state is obtained (100%) compared to maximal 50% with a conventional π/2-π/2 MQC pulse sequence. The design and numerical optimization of these pulses, with pulse times of about 1/2J (J is the coupling constant), are described. Examples of three of these spin-state-selective pulses (SSSP) for an AB system are given; simulations and experiments confirm their expected performance. To get some insight in the relations between the expectation values of the several coherences under the influence of Zeeman, J-coupling, and RF terms, Bloch-like equations for a proton AB system are derived, with neglection of relaxation. A system of 15 first-order coupled differential equations is found. A solution to these equations is given for the evolution of the zero-quantum coherence and longitudinal magnetization.  相似文献   

16.
Pursuit of new contrast in imaging has been the driving force behind many innovative applications of physics in medical MRI. Even though the use of intramolecular multiple quantum coherence in NMR spectroscopy has a long history, intermolecular multiple quantum coherence (iMQC) among spins on different molecules, such as proton proton iMQC in water, was considered impossible for many years.  相似文献   

17.
Localized 1H NMR spectroscopy using the 90°−t1−180°−t1+t2−180°−t2−Acq. PRESS sequence can lead to a signal loss for the lactate doublet compared with signals from uncoupled nuclei which is dependent on the choice of t1 and t2. The most striking signal loss of up to 78% of the total signal occurs with the symmetrical PRESS sequence (t1=t2) at an echo time of 2/J (290 ms). Calculations have shown that this signal loss is related to the pulse angle distributions produced by the two refocusing pulses which leads to the creation of single quantum polarization transfer (PT) as well as to not directly observable states (NDOS) of the lactate AX3 spin system: zero- and multiple-quantum coherences, and longitudinal spin orders. In addition, the chemical shift dependent voxel displacement (VOD) leads to further signal loss. By calculating the density operator for various of the echo times TE=n/J, n=1, 2, 3, …, we calculated quantitatively the contributions of these effects to the signal loss as well as their spatial distribution. A maximum signal loss of 75% can be expected from theory for the symmetrical PRESS sequence and TE=2/J for Hamming filtered sinc pulses, whereby 47% are due to the creation of NDOS and up to 28% arise from PT. Taking also the VOD effect into account (2 mT/m slice selection gradients, 20-mm slices) leads to 54% signal loss from NDOS and up to 24% from PT, leading to a maximum signal loss of 78%. Using RE-BURP pulses with their more rectangular pulse angle distributions reduces the maximum signal loss to 44%. Experiments at 1.5 T using a lactate solution demonstrated a maximum lactate signal loss for sinc pulses of 82% (52% NDOS, 30% PT) at TE=290 ms using the symmetrical PRESS sequence. The great signal loss and its spatial distribution is of importance for investigations using a symmetrical PRESS sequence at TE=2/J.  相似文献   

18.
In the system Bi2−wPbwSr2−xCa1−yNdx+yCu2O8+z different fractions of Nd are substituted on either Sr of Ca sites in order to introduce intrinsic insulating pinning centres. It is shown that a Nd concentration around x or y = 0.2 is likewise favourable with an average Nd---Nd distance in the range of the coherence length in the a, b-plane. However, clear evidence of flux pinning is only present for charge compensation with Pb2+. A simultaneous substitution of the Bi-based 2212 superconductor with moderate amounts of Nd3+ and Pb2+ improves the superconducting properties by strengthening the flux pinning forces.  相似文献   

19.
The magnetization under the spin-lattice relaxation and the nuclear magnetic resonance radiofrequency (RF) pulses is calculated for a signal RF pulse train and for a sequence of multiple RF pulse-trains. It is assumed that the transverse magnetization is zero when each RF pulse is applied. The result expressions can be grouped into two terms: a decay term, which is proportional to the initial magnetization M0, and a recovery term, which has no M0 dependence but strongly depends on the spin-lattice relaxation and the equilibrium magnetization Meq. In magnetic resonance pulse sequences using magnetization in transient state, the recovery term produces artifacts and can seriously degrade the function of the preparation sequence for slice selection, contrast weighting, phase encoding, etc. This work shows that the detrimental effect can be removed by signal averaging in an eliminative fashion. A novel fast data acquisition method for constructing the spin-lattice relaxation (T1) map is introduced. The method has two features: (i) By using eliminative averaging, the curve to fit the T1 value is a decay exponential function rather than a recovery one as in conventional techniques; therefore, the measurement of Meq is not required and the result is less susceptible to the accuracy of the inversion RF pulse. (ii) The decay exponential curve is sampled by using a sequence of multiple pulse-trains. An image is reconstructed from each train and represents a sample point of the curve. Hence a single imaging sequence can yield multiple sample points needed for fitting the T1 value in contrast to conventional techniques that require repeating the imaging sequence for various delay values but obtain only one sample point from each repetition.  相似文献   

20.
Conventional double quantum (DQ) editing techniques recover resonances of one metabolite at a time and are thus inefficient for monitoring metabolic changes involving several metabolites. A DQ coherence transfer double editing sequence using a dual-band DQ coherence read pulse is described here. The sequence permits simultaneous spectral editing for two metabolites with similar J coupling constants in a single scan. Simultaneous editing for taurine and gamma-aminobutyric acid (GABA) is demonstrated using solution phantoms and rat brain tissue. Selectivity of the double editing sequence for the target metabolites is as good as that achieved using conventional DQ editing which selects each metabolite individually. With experimental parameters of the double editing sequence chosen to optimize GABA editing, the sensitivity for GABA detection is the same as that with GABA editing only, while the sensitivity for taurine detection is decreased slightly compared to that with taurine editing only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号