首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The current paper is devoted to the study of traveling wave solutions of spatially homogeneous monostable reaction diffusion equations with ergodic or recurrent time dependence, which includes periodic and almost periodic time dependence as special cases. Such an equation has two spatially homogeneous and time recurrent solutions with one of them being stable and the other being unstable. Traveling wave solutions are a type of entire solutions connecting the two spatially homogeneous and time recurrent solutions. Recently, the author of the current paper proved that a spatially homogeneous time almost periodic monostable equation has a spreading speed in any given direction. This result can be easily extended to monostable equations with recurrent time dependence. In this paper, we introduce generalized traveling wave solutions for time recurrent monostable equations and show the existence of such solutions in any given direction with average propagating speed greater than or equal to the spreading speed in that direction and non-existence of such solutions of slower average propagating speed. We also show the uniqueness and stability of generalized traveling wave solutions in any given direction with average propagating speed greater than the spreading speed in that direction. Moreover, we show that a generalized traveling wave solution in a given direction with average propagating speed greater than the spreading speed in that direction is unique ergodic in the sense that its wave profile and wave speed are unique ergodic, and if the time dependence of the monostable equation is almost periodic, it is almost periodic in the sense that its wave profile and wave speed are almost periodic.  相似文献   

2.
We use a shooting method to show the existence of traveling wave fronts and to obtain an explicit expression of minimum wave speed for a class of diffusive predator?Cprey systems. The existence of traveling wave fronts indicates the existence of a transition zone from a boundary equilibrium to a co-existence steady state and the minimum wave speed measures the asymptotic speed of population spread in some sense. Our approach is a significant improvement of techniques introduced by Dunbar. The advantage of our method is that it does not need the notion of Wazewski??s set and LaSalle??s invariance principle used in Dunbar??s approach. In our approach, we convert the equations for traveling wave solutions to a system of first order equations by a ??non-traditional transformation??. With this converted new system, we are able to construct a Liapunov function, which gives an immediate implication of the boundedness and convergence of the relevant class of heteroclinic orbits. Our method provides a more efficient way to study the existence of traveling wave solutions for general predator?Cprey systems.  相似文献   

3.
This paper is concerned with the existence, uniqueness, and global stability of traveling waves in discrete periodic media for a system of ordinary differential equations exhibiting bistable dynamics. The main tools used to prove the uniqueness and asymptotic stability of traveling waves are the comparison principle, spectrum analysis, and constructions of super/subsolutions. To prove the existence of traveling waves, the system is converted to an integral equation which is common in the study of monostable dynamics but quite rare in the study of bistable dynamics. The main purpose of this paper is to introduce a general framework for the study of traveling waves in discrete periodic media.  相似文献   

4.
We study the existence and nonexistence of traveling waves of a general diffusive Kermack–McKendrick SIR model with standard incidence where the total population is not constant. The three classes, susceptible S, infected I and removed R, are all involved in the traveling wave solutions. We show that the minimum wave speed of traveling waves for the three-dimensional non-monotonic system can be derived from its linearizaion at the initial disease-free equilibrium. The proof in this paper is based on Schauder fixed point theorem and Laplace transform. Our study provides a promising method to deal with high dimensional epidemic models.  相似文献   

5.
In this paper, we study the time periodic traveling wave solutions for a periodic SIR epidemic model with diffusion and standard incidence. We establish the existence of periodic traveling waves by investigating the fixed points of a nonlinear operator defined on an appropriate set of periodic functions. Then we prove the nonexistence of periodic traveling via the comparison arguments combined with the properties of the spreading speed of an associated subsystem.  相似文献   

6.
A nonuniform crack growth problem is considered for a homogeneous isotropic elastic medium subjected to the action of remote oscillatory and static loads. In the case of a plane problem, the former results in Rayleigh waves propagating toward the crack tip. For the antiplane problem the shear waves play a similar role. Under the considered conditions the crack cannot move uniformly, and if the static prestress is not sufficiently high, the crack moves interruptedly. For fracture modes I and II the established, crack speed periodic regimes are examined. For mode III a complete transient solution is derived with the periodic regime as an asymptote. Examples of the crack motion are presented. The crack speed time-period and the time-averaged crack speeds are found. The ratio of the fracture energy to the energy carried by the Rayleigh wave is derived. An issue concerning two equivalent forms of the general solution is discussed.  相似文献   

7.
We study traveling wavefront solutions for two reaction–diffusion systems, which are derived respectively as diffusion approximations to two nonlocal spatial SIRS models. These solutions characterize the propagating progress and speed of the spatial spread of underlying epidemic waves. For the first diffusion system, we find a lower bound for wave speeds and prove that the traveling waves exist for all speeds bigger than this bound. For the second diffusion system, we find the minimal wave speed and show that the traveling waves exist for all speeds bigger than or equal to the minimal speed. We further prove the uniqueness (up to translation) of these solutions for sufficiently large wave speeds. The existence of these solutions are proved by a shooting argument combining with LaSalle’s invariance principle, and their uniqueness by a geometric singular perturbation argument.  相似文献   

8.
This paper is concerned with the traveling wave solutions of delayed reaction–diffusion systems. By using Schauder’s fixed point theorem, the existence of traveling wave solutions is reduced to the existence of generalized upper and lower solutions. Using the technique of contracting rectangles, the asymptotic behavior of traveling wave solutions for delayed diffusive systems is obtained. To illustrate our main results, the existence, nonexistence and asymptotic behavior of positive traveling wave solutions of diffusive Lotka–Volterra competition systems with distributed delays are established. The existence of nonmonotone traveling wave solutions of diffusive Lotka–Volterra competition systems is also discussed. In particular, it is proved that if there exists instantaneous self-limitation effect, then the large delays appearing in the intra-specific competitive terms may not affect the existence and asymptotic behavior of traveling wave solutions.  相似文献   

9.
The explicit expressions for the change in the amplitudes of one-dimensional acceleration and shock waves propagating through arbitrary homogeneous materials described by the strain and internal state variables/parameters/are derived. The existence of a critical amplitude β for the acceleration wave and a critical strain gradient λ for the shock wave is established. For an infinitesimal shock wave the general form of the solution of the governing differential equation is furnished. The differential equations for the amplitudes of these two kind of waves are applied to an elastic-viscoplastic material.  相似文献   

10.
We study traveling wave solutions arising in Sivashinsky’s model of subsonic detonation which describes combustion processes in inert porous media. Subsonic (shockless) detonation waves tend to assume the form of a reaction front propagating with a well defined speed. It is known that traveling waves exist for any value of thermal diffusivity [5]. Moreover, it has been shown that, when the thermal diffusivity is neglected, the traveling wave is unique. The question of whether the wave is unique in the presence of thermal diffusivity has remained open. For the subsonic regime, the underlying physics might suggest that the effect of small thermal diffusivity is insignificant. We analytically prove the uniqueness of the wave in the presence of non-zero diffusivity through applying geometric singular perturbation theory. Dedicated to Mr. Brunovsky in honor of his 70th birthday.  相似文献   

11.
In this article, we study the existence and the uniqueness of traveling waves for a discrete reaction–diffusion equation with bistable nonlinearity, namely a generalization of the fully overdamped Frenkel–Kontorova model. This model consists of a system of ODEs which describes the dynamics of crystal defects in lattice solids. Under very weak assumptions, we prove the existence of a traveling wave solution and the uniqueness of the velocity of propagation of this traveling wave. The question of the uniqueness of the profile is also studied by proving Strong Maximum Principle or some weak asymptotics on the profile at infinity.  相似文献   

12.
This paper is devoted to the study of propagation phenomena for a Lotka–Volterra reaction–advection–diffusion competition model in a periodic habitat. We first investigate the global attractivity of a semi-trivial steady state for the periodic initial value problem. Then we establish the existence of the rightward spreading speed and its coincidence with the minimal wave speed for spatially periodic rightward traveling waves. We also obtain a set of sufficient conditions for the rightward spreading speed to be linearly determinate. Finally, we apply the obtained results to a prototypical reaction–diffusion model.  相似文献   

13.
This paper is devoted to the study of spatial dynamics of a class of discrete-time population models in a periodic lattice habitat. In the general case of recruitment functions, we obtain the existence and computation formula of spreading speeds and show that they coincide with the minimal wave speeds for periodic traveling waves in the positive and negative directions.  相似文献   

14.
This paper studies nonlinear waves in a prestretched cylinder composed of a Blatz-Ko material. Starting from the three-dimensional field equations, two coupled PDEs for modeling weakly nonlinear long waves are derived by using the method of coupled series and asymptotic expansions. Comparing with some other existing models in literature, an important feature of these equations is that they are consistent with traction-free surface conditions asymptotically. Also, the material nonlinearity is kept to the third order. As these two PDEs are quite complicated, the attention is focused on traveling waves, for which a first-order system of ODEs are obtained. We use the technique of dynamical systems to carry out the analysis. It turns out that the system is three parameters (the prestretch, the propagating speed and an integration constant) dependent and there are totally seven types of phase planes which contain trajectories representing bounded traveling waves. The parametric conditions for each phase plane are established. A variety of solitary and periodic waves are found. An important finding is that kink waves can propagate in a Blatz-Ko cylinder. We also find that one type of periodic waves has an interesting feature in the profile slope. Analytical expressions for all bounded traveling waves are obtained.  相似文献   

15.
The asymptotic speed of spread is established for a diffusive and time-delayed integro-differential equation modeling vector disease, and its coincidence with the minimal wave speed for monotone traveling waves is proved. An erratum to this article can be found at  相似文献   

16.
Axial momentum carried by waves in a uniform waveguide is considered based on the conservation laws and a kind of the causality principle. Specifically, we examine (without resorting to constitutive data) steady-state waves of an arbitrary shape, periodic waves which speed differs from the speed of its form and binary waves carrying self-equilibrated momentum. The approach allows us to represent momentum as a product of the wave mass and the wave speed. The propagating wave mass, positive or negative, is the excess of that in the wave over its initial value. This general representation is valid for mechanical waves of arbitrary nature and intensity. The finite-amplitude longitudinal and periodic transverse waves are examined in more detail. It is shown in particular, that the transverse excitation of a string or an elastic beam results in the binary wave. The closed-form expressions for the drift in these waves functionally reduce to the Stokes’ drift in surface water waves (a half the latter by the value). Besides, based on the general representation an energy–momentum relation is discussed and the physical meaning of the so-called “wave momentum” is clarified.  相似文献   

17.
All the possible traveling wave solutions of Whitham-Broer-Kaup (WBK) equation are investigated in the present paper. By employing phase plane analysis, transition boundaries are derived to divide the parameter space into several regions associated with different types of phase portraits corresponding to different forms of wave solutions. All the exact expressions of bounded wave solutions are obtained as well as their existence conditions. The mechanism of bifurcation between different waves with varying Hamiltonian value has been revealed. It is pointed out that as the periods of two coexisted periodic waves tend to infinity, they may evolve to two solitary waves. Furthermore, when their trajectories pass through the common saddle point, the two solitary waves may merge into a periodic wave, and its amplitude is nearly equal to the sum of the amplitudes of the two solitary wave solutions.  相似文献   

18.
We investigate the existence of traveling wave solutions for a system of reaction–diffusion equations that has been used as a model for microbial growth in a flow reactor and for the diffusive epidemic population. The existence of traveling waves was conjectured early but only has been proved recently for sufficiently small diffusion coefficient by the singular perturbation technique. In this paper we show the existence of traveling waves for an arbitrary diffusion coefficient. Our approach is a shooting method with the aid of an appropriately constructed Liapunov function.Dedicated to Professor Shui-Nee Chow on the occasion of his 60th birthday.Wenzhang Huang-Research was supported in part by NSF Grant DMS-0204676.  相似文献   

19.
By using the dynamical system method to study the 2D-generalized Benney- Luke equation, the existence of kink wave solutions and uncountably infinite many smooth periodic wave solutions is shown. Explicit exact parametric representations for solutions of kink wave, periodic wave and unbounded traveling wave are obtained.  相似文献   

20.
We develop a singular perturbation technique to study the existence of periodic traveling wave solutions with large wave speed for a class of reaction-diffusion equations with time delay and non-local response. Unlike the classical singular perturbation method, our approach is based on a transformation of the differential equations to integral equations in a Banach space that reduces the singular perturbation problem to a regular perturbation problem. The periodic traveling wave solutions then are obtained by the use of Liapunov-Schmidt method and a generalized implicit function theorem. The general result obtained has been applied to a non-local reaction-diffusion equation derived from an age-structured population model with a logistic type of birth function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号