首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 466 毫秒
1.
用密度泛函理论(DFT)的B3LYP方法和6-311+G(3df)基组,计算了气态下硝酰氯和顺/反应硝酸氯的几何构型、电子结构、红外光谱以及热力学性质,并讨论了它们的互变异构反应,分析了过渡态的结构。结果表明,B3LYP/6-311+G(3df)计算得到的结果与实验值及CCSD(T)方法计算结果吻合,且更适应于研究反应机理,ClNO2转变为cis-ClONO的过渡态(TS1)偏离平面构型;cis-ClONO和trans-ClONO互变反应的过渡态(TS2)属于内旋转位垒;高水平计算表明不存在由ClNO2直接转变为trans-ClONO的过渡态,而是得到了一个十分接近异裂产物的二级马鞍点(2SP)。根据得到的热力学函数计算了气态时各温度下互变异构反应的平衡常数。  相似文献   

2.
The conformational behavior and structural stability of 3,3-dichloropropanal and 3,3,3-trichloropropanal were investigated by ab initio calculations. The 6-311 + + G** basis set was employed to include polarization and diffuse functions in the calculations at B3LYP level. From the calculation, the trans conformer of 3,3,3-trichloropropanal was predicted to be the predominant conformer with about 2 kcal mol(-1) of energy lower than the cis form. Additionally, 3,3 dichloro-propanal was predicted to exist as a mixture of three stable conformers. The potential function scans were calculated for the two molecules from which the rotational barriers could be estimated. The vibrational frequencies were computed at B3LYP level and complete vibrational assignments were made based on normal coordinate calculations for the conformers of the two molecules. Vibrational Raman and infrared spectra of the mixture of the stable conformers were computed at 300 K.  相似文献   

3.
The conformational behavior and the structural stability of formyl fluoroketene, formyl chloroketene and formyl methylketene were investigated by utilizing quantum mechanical DFT calculations at B3LYP/6-31I + + G** and ab initio calculations at MP2/6-311 + + G** levels. The three molecules were predicted to have a planar s-cis<-->s-trans conformational equilibrium. From the calculations, the direction of the conformational equilibrium was found to be dependent on the nature of the substituting group. In formyl haloketenes, the cis conformation, where the C=O group eclipses the ketenic group, was expected to be of lower energy than the trans conformer. In the case of formyl methylketene the conformational stability was reversed and the trans form (the aldehydic hydrogen eclipsing the ketenic group) was calculated to be about 2 kcal mol(-1) lower in energy than the cis form. The calculated cis-trans energy barrier was found to be in the order: fluoride (15.3 kcal mol(-1)) > chloride (13.1 kcal mol(-1)) > methyl (11.7 kcal mol(-1). Full optimization was performed at the ground and the transition states of the molecules. The vibrational frequencies for the stable conformers of the three ketenic systems were computed at the DFT-B3LYP level, and the zero-point corrections were included into the calculated rotational barriers. Complete vibrational assignments were made on the basis of both normal coordinate calculations and comparison with experimental results of similar molecules.  相似文献   

4.
The infrared (3200-30 cm(-1) spectra of gaseous and solid and the Raman spectra of liquid (3200-30 cm(-1), with quantitative depolarization values, and solid vinyldichlorosilane, CH2=CHSiHCl2, have been recorded. Both the gauche and the cis conformers have been identified in the fluid phases. Variable temperature (105-150 degrees C) studies of the infrared spectra of the sample dissolved in liquid krypton have been carried out. From these data the enthalpy difference has been determined to be 20 +/- 5 cm(-1) (235 +/- 59 J mol(-1) with the gauche conformer the more stable rotamer. It was not possible to obtain a single conformer in the solid even with repeated annealing of the sample. The experimental enthalpy difference is in agreement with the prediction from MP2/6-311 + G(2d,2p) ab initio calculations with full electron correlation. However, when smaller basis sets, i.e. 6-31G(d) and 6-311 + G(d,p) were utilized the cis conformer was predicted to be the more stable form. Complete vibrational assignments are proposed for both conformers based on infrared contours, relative infrared and Raman intensities, depolarization values and group frequencies, which are supported by normal coordinate calculations utilizing the force constants from ab initio MP2/6-31G(d) calculations. From the frequencies of the Si-H stretches, the Si-H bond distance of 1.474 A has been determined for both the gauche and the cis conformers. Complete equilibrium geometries have been determined for both rotamers by ab initio calculations employing the 6-31G(d), 6-311 + G(d,p) and 6-311 + (2d,2p) basis sets at level of Hartree-Fock (RHF) and/or Moller Plesset to the second order (MP2) with full electron correlation. The potential energy terms for the conformer interconversion have been obtained from the MP2/6-31G(d) calculations. The results are discussed and compared with those obtained for some similar molecules.  相似文献   

5.
The infrared spectra (3200-50 cm(-1)) of gaseous and solid and Raman spectra (3200-10 cm(-1)) of the liquid and solid methylvinyl silyl chloride, CH(2)=CHSiH(CH(3))Cl, and the Si-d isotopomer have been recorded. The three expected stable conformers (the three different groups eclipsing the double bond) have been identified in the fluid phase, but it was not possible to obtain an annealed solid with a single conformer. Variable temperature (-105 to -150 degrees C) studies of the infrared spectra of the sample dissolved in liquid krypton has been carried out. From these data the enthalpy differences between the most stable conformer with the hydrogen atom (HE) eclipsing the double bond to that with the chlorine atom (ClE) and the methyl group (ME) eclipsing the double bond have been determined to be 17+/-4 cm(-1) (203+/-48 Jmol(-1)) and 80+/-12 cm(-1) (957+/-144 Jmol(-1)), respectively. However in the liquid state the ME conformer is the most stable form with enthalpy differences of 13+/-4 and 27+/-7 cm(-1) to the HE and ClE rotamers, respectively. It is estimated that there is 39% of the HE conformer, 35% of the ClE conformer, and 26% of the ME conformer present at ambient temperature. A complete vibration assignment is proposed for the HE conformer which is based on infrared band contours and group frequencies, which is supported by normal coordinate calculations utilizing the force constants from ab initio MP2/6-31G(d) calculations. Additionally, several of the fundamentals for the other two conformers have been assigned. The optimal geometries, conformational stabilities, harmonic force fields, infrared intensities, Raman activities, depolarization ratios, and vibrational frequencies are reported for all three conformers from MP2/6-31G(d,p) ab initio calculations with full electron correlation. Optimized geometrical parameters and conformational stabilities have been obtained from MP2/6-311+G(d,p) calculations. At this highest level of calculations, the HE conformer is predicted to be more stable by 62 and 84 cm(-1) than the ME and ClE conformers, respectively. The coefficients from the potential function governing the conformational interchange have been obtained from the MP2/6-31G(d) ab initio calculations. By utilizing the frequency of the SiH stretching mode, the r(0)-H distance has been determined to be 1.481 A for the HE conformer. The ab initio calculated quantities are compared to the experimentally determined values where applicable, as well as to some corresponding results for some similar molecules.  相似文献   

6.
Ab initio conformers and dimers have been computed at RHF and B3LYP/6-31G* levels for isomers 2-chloro-3-hydroxybenzaldehyde and 3-chloro-4-hydroxybenzaldehyde to explain the observed infrared absorption and Raman vibrational spectral features in the region 3500-50 cm(-1). The position of the chlorine in ortho position with respect to aldehyde group in 2-chloro-3-hydroxybenzaldehyde yields four distinct conformers; whereas the chlorine in meta position in 3-chloro-4-hydroxybenzaldehyde yields effectively only three conformers. Major spectral features as strong absorptions near 3160-80 cm(-1), down-shifting of the aldehydic carbonyl stretching mode and up-shifting of hydroxyl group's in-plane bending mode are explained using ab initio evidence of O-H?O bond-aided dimerization between the most stable conformers of each molecule. Absorption width of about 700 cm(-1) (~8.28 kJ/mol) of O-H stretching modes suggests a strong hydrogen bonding with the ab initio bond lengths, O-H?O in the range of 2.873-2.832 ?. A strong Raman mode near 110-85 cm(-1) in each molecule is interpreted to be coupled vibrations of pseudo-dimeric trans and cis structures.  相似文献   

7.
The conformations of phenylazo‐2‐naphthalene (I) and phenylazo‐1‐naphthalene (II) have been studied using ab initio methods and density functional theory. The rotational potential energy surfaces about the C N bonds were calculated for both the trans and the cis forms at the PM3 and HF/STO‐3G levels. The PM3 method was found to be incapable for locating the energy minima correctly. The geometries of rotamers obtained from the HF/STO‐3G surface were fully optimized at the HF/6‐31G* and B3LYP/6‐31G* levels. Single‐point MP2/6‐31G* calculations have also been carried out at the HF/6‐31G* geometries. The vibrational spectra, standard thermodynamic functions, heats of formation, and equilibrium molar fractions have been obtained. According to the calculated results, I is comparatively more stable than II. The trans forms have much lower energies than the cis forms, implying that I and II mainly exist in the trans planar forms. The energy gap (ΔE) between the frontier molecular orbitals (MOs) of the cis forms are about 0.7 eV higher than those of the trans ones, indicating that change in geometry from trans to cis form will cause a hypsochromic effect. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 79: 25–33, 2000  相似文献   

8.
The conformational and structural stability of nitrosoazide NNN-N=O and nitroazide NNN-NO2 were investigated by DFT-B3LYP and ab initio MP2 calculations with 6-311++G** basis set. From the calculations, nitrosoazide was predicted to exist predominantly in the planar trans (NNN and N=O groups are trans to each other) structure with high trans-cis rotational barrier of about 11 kcal mol-1 as a result of pronounced conjugation between the azide group and the N=O bond. The NO2 rotational barrier in nitroazide was predicted from the symmetric potential function to be of about 7 kcal mol-1. The vibrational frequencies were calculated at the DFT-B3LYP level and the infrared and Raman spectra of the cis-trans mixture were plotted. Complete vibrational assignments were made on the basis of normal coordinate calculations for the stable conformers of both molecules. For nitrosoazide, the calculated wavenumbers were compared to the corresponding experimental values obtained from early reported Raman spectrum of the molecule.  相似文献   

9.
Variable temperature (-55--100 degrees C) studies of the infrared spectra (3500-400 cm(-1)) of ethylphosphine-borane, CH3CH2PH2BH3, and ethylphosphine-borane-d5 dissolved in liquid xenon have been recorded. From these data, the enthalpy difference has been determined to be 86 +/- 8 cm(-1) (1.03 +/- 0.10 kJ/mol), with the trans conformer the more stable rotamer. Complete vibrational assignments are presented for both conformers, which are consistent with the predicted frequencies obtained from the ab initio MP2/6-31G(d) calculations. The optimized geometries, conformational stabilities, harmonic force fields, infrared intensities, Raman activities, and depolarization ratios have been obtained from RHF/6-31G(d) and/or MP2/6-31G(d) ab initio calculations. These quantities are compared to the corresponding experimental quantities when appropriate as well as with some corresponding results for some similar molecules. The r0 structural parameters have been obtained from a combination of the previously reported microwave rotational constants and ab initio predicted parameters.  相似文献   

10.
The infrared (3200-30 cm(-1) spectra of gaseous and solid, the Raman spectra (3200-30 cm(-1)) of the liquid and solid vinyl silyl bromide, CH2CHSiH2Br, have been recorded. Additionally, quantitative depolarization values have been obtained. Both the gauche and cis conformers have been identified in the fluid phases but only the gauche conformer remains in the solid. Variable temperature studies from 0 to -87 degrees C of the Raman spectrum of the liquid was carried out. From these data, the enthalpy difference has been determined to be 22 +/- 6 cm(-1) (0.26 +/- 0.08 kJ/mol), with the gauche conformer being the more stable form. The predictions from the ab initio calculations up to MP2/6-311 + + G(2d,2p) basis set favor the gauche as the more stable form. A complete vibrational assignment is proposed for both the gauche and cis conformers based on infrared band contours, relative intensities, depolarization values and group frequencies. The vibrational assignments are supported by normal coordinate calculations utilizing the force constants from ab initio MP2/6-31G(d) calculations and the potential energy terms for the conformer interconversion have been obtained from the same calculations. Complete equilibrium geometries have been determined for both rotamers by ab initio calculations employing a variety of basis sets up to 6-311 + + G(2d,2p) at levels of restricted Hartree-Fock (RHF) and/or Moller-Plesset (MP) to second order. The results are discussed and compared to those obtained for some similar molecules.  相似文献   

11.
The Raman spectra (3200-30 cm(-1)) of liquid and solid, and infrared spectra of gaseous and solid chloromethyl silyl dichloride, ClCH2SiHCl2, have been recorded. Variable temperature (-105 to -150 degrees C) studies of the infrared spectra of the sample dissolved in liquid krypton have been carried out. From these data, the enthalpy difference was determined to be 363 +/- 40 cm(-1) (4.34 +/- 0.48 kJ mol(-1)), with the more stable form being the gauche conformer, which is consistent with the prediction from ab initio calculations at both the Hartree-Fock level and with full electron correlation by the perturbation method to second order. It is estimated that 92% of the sample is in the gauche form at ambient temperature. A complete vibrational assignment is proposed for the gauche conformer and several of fundamentals of the trans conformer based on infrared band contours, relative intensities, depolarization values, and group frequencies, which is supported by normal coordinate calculations utilizing the force constants from the ab initio MP2/6-31G(d) calculations. The r0 SiH bond distances of 1.476 and 1.472 A have been obtained for the trans and gauche conformers, respectively, from the silicon-hydrogen stretching frequencies. The optimized geometries have also been obtained from ab initio calculations utilizing several different basis sets with full electron correlation by the perturbation method up to MP2/6-311 + G(2d,2p). The results are discussed and compared to some corresponding results for several related molecules.  相似文献   

12.
Variable temperature (-60 to -100 degrees C) studies of the infrared spectra (3500-400 cm(-1)) of propionyl fluoride (CH3CH2CFO) and 2-methylpropionyl fluoride ((CH3)2CHCFO), dissolved in liquid xenon have been recorded. From these data, the enthalpy difference has been determined to be 329 +/- 33 cm(-1) (3.94 +/- 0.39 kJ/mol) for propionyl fluoride with the trans conformer (methyl group eclipsing the oxygen atom) more stable than the gauche form. For 2-methylpropionyl fluoride, the enthalpy difference has been determined to be 297 +/- 30 cm(-1) (3.55 +/- 0.36 kJ/mol) with the gauche conformer (methyl group eclipsing the oxygen atom) more stable than the trans form. From these DeltaH values along with assigned torsional fundamentals for both conformers and accompanying "hot bands" the potential functions governing the conformational interchange have been calculated. Utilizing the infrared data from the xenon solution and ab initio frequency predictions from MP2/6-31G* calculations, a few reassignments of the fundamentals have been made. Ab initio calculations have been carried out with several different basis sets up to MP2/6-311 + G** from which structural parameters and conformational stabilities have been determined. Additionally, force constants, infrared intensities, Raman activities, depolarization ratios, and scaled vibrational frequencies have been determined from MP2/6-31G* calculations. Adjusted structural parameters have been obtained from combined ab initio predicted values and previously reported microwave data. These parameters are compared to those obtained from either the earlier microwave and/or electron diffraction studies. Similar ab initio calculations and structural parameter determinations have been carried out for acetyl fluoride (CH3CFO) and trimethylacetyl fluoride ((CH3)3CCFO) and compared to the corresponding experimental results when appropriate.  相似文献   

13.
The infrared (3500-30 cm(-1)) spectra of gaseous and solid and the Raman (3500-200 cm(-1)) spectra of the liquid with quantitative depolarization ratios and solid trans-3-chloropropenoyl chloride (trans-ClCHCHCClO) have been recorded. These data indicate that both the anti (carbonyl bond trans to the carbon-carbon double bond) and syn conformers are present in the fluid states but only the anti conformer is present in the crystalline state. The mid-infrared spectra of the sample dissolved in liquid xenon as a function of temperature (-55 to -100 degrees C) have been recorded. Utilizing conformer pairs at 870 and 725 cm(-1), 1215 and 1029 cm(-1), and 1215 and 1228 cm(-1), the enthalpy difference has been determined to be 136+/-5 cm(-1) (389+/-14 cal mol(-1)) with the anti conformer the more stable form. Optimized geometries and conformational stabilities were obtained from ab initio calculations at the levels of RHF/6-31G(d), MP2/6-31G(d), MP2/6-311 + + G(d,p), MP2/6-311 + + G(2d,2p) and MP2/6-311 + + G(2df,2pd) with only the latter two calculations predicting the anti rotamer to be the more stable form. The vibrational frequencies, harmonic force constants and infrared intensities were obtained from the MP2/6-31G(d) calculations, whereas the Raman activities and depolarization values were obtained from the RHF/6-31G(d) calculations. The spectra are interpreted in detail and the results are compared with those obtained for some related molecules.  相似文献   

14.
The gas-phase proton affinities of 4,4'-di(R)-2,2'-bipyridines (R: H, Br, Cl, NO(2), Me) were determined by mass spectrometric measurements and by ab initio calculations at the HF/6-31G and MP2/6-31G levels of theory. The energy barriers for rotation about the central C-C bond were also studied computationally. Two minima were found for both unprotonated and protonated species, the global minima being at the trans planar and cis planar conformations, respectively. Local minima for the unprotonated compounds were at the cis nonplanar conformation and for the protonated compounds at the trans nonplanar. Two different proton affinity values were calculated for each compound by employing different conformations for the protonated species. The computational values were in good agreement with the experimental proton affinities. Substituents affect the proton affinity according to their ability to withdraw or to donate electrons, halogen and nitro-substituted bipyridines having a lower proton affinity and methyl-substituted bipyridine having a higher proton affinity than 2,2'-bipyridine itself.  相似文献   

15.
We report combined experimental and theoretical studies of infrared absorptions induced in solid molecular hydrogen by different conformers of formic acid (HCOOH, FA). FTIR spectra recorded in the H(2) fundamental region (4120-4160 cm(-1)) reveal a number of relatively strong trans-FA induced Q-branch absorptions that are assigned by studying both FA-doped parahydrogen (pH(2)) and normal hydrogen (nH(2)) samples. The induced H(2) absorptions are also studied for HCOOD doped nH(2) crystals for both the trans and cis conformers that show resolvable differences. Samples containing >90% of the higher energy cis-HCOOD conformer are produced by in situ IR pumping of the OD stretching overtone of trans-HCOOD using narrow-band IR light. Minimum energy structures for 1:1 complexes of H(2) and FA are determined using ab initio methods. The measured differences in the cis- versus trans-HCOOD induced spectra are in qualitative agreement with the frequencies and intensities calculated for the identified cluster structures as discussed in terms of the model of specific interactions.  相似文献   

16.
Variable temperature ( -60 to 100 degrees C) studies of the infrared spectra (3,500-400 cm(-1) of cyclopropane carboxaldehyde. c-C3H5CHO, dissolved in liquid xenon have been recorded. Utilizing several doublets due to the syn and anti conformers. the enthalpy difference has been determined to be 95 +/- 8 cm(-1) (1.14 +/- 0.10 kJ/mol) with the (anti conformer (oxygen atom trans to the three-member ring) the more stable rotamer. From this deltaH value, along with assigned torsional transitions for both the anti and svi, conformers, the potential function governing the conformational interchange has been estimated. Using the new infrared data from the xenon solution, along with some additional Raman data, and ab initio predictions from MP2/6-31G(d) calculations some reassignments of the fundamentals have been made. Ab initio calculations have been carried out with several different basis sets upto 6-311 +/- +G(d,p) with full electron correlation by the perturbation method to second order from which structural parameters and conformational stabilities have been determined. From all of the ab initio calculations, the syn conformer is predicted to be the more stable which is at variance with the experimental results. The spectroscopic and theoretical results are compared to the corresponding quantities for some similar molecules.  相似文献   

17.
Infrared spectra (3500-50 cm(-1)) of gaseous and solid, and Raman spectrum (3500-30 cm(-1)) of liquid vinyldifluorosilane, CH(2)z.dbnd6;CHSiF(2)H, are reported. Both the cis and gauche rotamers have been identified in the fluid phases. From temperature-dependent FT-infrared spectra of krypton solutions, it is shown that the cis conformer is more stable than the gauche form by 119+/-12 cm(-1) (1.42+/-0.14 kJ mol(-1)). At ambient temperature there is 53+/-2% of the gauche conformer present. Complete vibrational assignments are provided for the cis conformer and several modes are identified for the gauche form. Harmonic force constants, fundamental frequencies, infrared intensities, and Raman activities have been obtained from MP2/6-31G(d) calculations with full electron correlation. The optimized geometries and conformational stabilities have also been obtained from ab initio MP2/6-31G(d), MP2/6-311+G(d,p), and MP2/6-311+G(2d,2p) calculations with full electron correlation as well as from density functional theory calculations (DFT) by the B3LYP method. The SiH bond distances (r(0)) of 1.472 and 1.471 A have been obtained for the cis and gauche conformers, respectively, from the silicon-hydrogen stretching frequencies. These results are compared to the corresponding quantities of the corresponding carbon analogue as well as with some similar molecules.  相似文献   

18.
Ab initio molecular orbital (MO) calculations have been carried out for base-hydrogen fluoride (HF) complexes (base = O3 and SO2) in order to elucidate the structures and energetics of the complexes. The ab initio calculations were performed up to the QCISD(T)/6-311++G(d,p) level of theory. In both complexes, hydrogen-bonded structures where the hydrogen of HF orients toward one of the oxygen atoms of bases were obtained as stable forms. The calculations showed that cis and trans isomers exist in both complexes. All calculations for the SO2-HF complex indicated that the cis form is more stable in energy than the trans form. On the other hand, in O3-HF complexes, the stable structures are changed by the ab initio levels of theory used, and the energies of the cis and trans forms are close to each other. From the most sophisticated calculations (QCISD(T)/6-311++G(d,p)//QCISD/6-311+G(d) level), it was predicted that the complex formation energies for cis SO2-HF, trans SO2-HF, cis O3-HF, and trans O3-HF are 6.1, 5.7, 3.4, and 3.6 kcal/mol, respectively, indicating that the binding energy of HF to SO2 is larger than that of O3. The harmonic vibrational frequencies calculated for cis O3-HF and cis SO2-HF complexes were in good agreement with the experimental values measured by Andrews et al. Also, the calculated rotation constants for cis SO2-HF agreed with the experiment.  相似文献   

19.
Raman and infrared spectra of n-butyl, isobutyl, sec-butyl and tert-butyl nitrite are reported. Density functional theory and M?eller-Plesset calculations with 6-31G* and 6-311G* basis sets were used to determine ground state molecular geometries and vibrational frequencies of these compounds. Calculations and spectral data of these molecules were used to perform partial vibrational mode assignments for the observed transitions. In agreement with previous investigations of alkyl nitrites, cis and trans rotational conformers of n-butyl, isobutyl and sec-butyl nitrite were observed in the gas phase infrared spectra and the condensed phase Raman and infrared spectra. Among the several predicted geometries of these compounds, the cis-trans geometry (cis with respect to the C-O-N=O dihedral angle and trans with respect to the C-C-O-N dihedral) was calculated to be the most stable conformer of n-butyl and isobutyl nitrite, while the cis-gauche conformer was found to be the most stable geometry of sec-butyl nitrite. The cis-type structures of these three molecules are favored due to formation of a pseudo hydrogen bond between the nitrite group and the alpha-carbon hydrogen atoms. Hindrance with the alkyl moiety, however, causes the trans conformer (trans with respect to the C-O-N=O dihedral) of tert-butyl nitrite to lie lower than its cis conformer, a result that was supported by our spectroscopic measurements. The characteristic N=O stretch frequency for the trans conformers of all the compounds examined was observed to decrease with increasing branching at the alpha-carbon, while the same mode for the cis conformers shows no change among the primary and secondary nitrites. Evidence is also provided that suggests that the relative number of cis conformers to trans conformers decreases as the alpha-carbon branching increases.  相似文献   

20.
Variable temperature (−55 to −150°C) studies of the infrared spectra (3500–400 cm−1) of 1-chloropropane (CH3CH2CH2Cl) and 1-bromopropane (CH3CH2CH2Br) dissolved in liquid krypton and xenon, respectively, have been recorded. Utilizing two conformer pairs in krypton solution for chloride and three conformer pairs in xenon solution for bromide, enthalpy differences of 52±3 cm−1 (0.62±0.06 kJ/mol) and 72±7 cm−1 (0.86±0.08 kJ/mol) were obtained for the chloride and bromide, respectively, with the gauche form being the more stable conformer for both molecules. From these data, it is estimated that 28 and 26% of trans form are present at ambient temperature for the chloride and bromide, respectively. The conformation stabilities, harmonic force constants, fundamental frequencies, infrared intensities and Raman activities have been obtained from RHF/6-31G(d) and/or MP2/6-31G(d) ab initio calculations for both halopropanes and these quantities have been compared to the experimental values when appropriate. The optimized geometries have also been obtained with several different ab initio basis sets with full electron correlation by the perturbation method up to MP2/6-311+G(2d,2p). The r0 structural parameters of both halopropanes have been obtained by combining the ab initio data with the previously reported microwave rotational constants for both conformers. The quantities are compared to the corresponding results for some similar molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号