首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Discontinuous changes of the lattice parameters at the Mott metal-insulator transition are detected by high-resolution dilatometry on deuterated crystals of the layered organic conductor kappa-(BEDT-TTF)(2)Cu[N(CN)(2)]Br. The uniaxial expansivities uncover a striking and unexpected anisotropy, notably a zero effect along the in-plane c axis along which the electronic interactions are relatively strong. A huge thermal expansion anomaly is observed near the end point of the first-order transition line enabling us to explore the critical behavior with very high sensitivity. The analysis yields critical fluctuations with an exponent alpha approximately 0.8+/-0.15 at odds with the novel criticality recently proposed for these materials [Kagawa et al., Nature (London) 436, 534 (2005)]. Our data suggest an intricate role of the lattice degrees of freedom in the Mott transition for the present materials.  相似文献   

2.
We present a theory of spin and orbital states in Mott insulator LaTiO3. The spin-orbital superexchange interaction between d(1)(t(2g)) ions in cubic crystal suffers from a pathological degeneracy of orbital states at the classical level. Quantum effects remove this degeneracy and result in the formation of the coherent ground state, in which the orbital moment of t(2g) level is fully quenched. We find a finite gap for orbital excitations. Such a disordered state of local degrees of freedom on unfrustrated, simple cubic lattice is highly unusual. Orbital liquid state naturally explains observed anomalies of LaTiO3.  相似文献   

3.
Phononic excitations have been investigated using Raman scattering studies on CaCu(3)Ti(4)O(12) and SrCu(3)Ti(4)O(12) compounds as a function of temperature down to 10 K. Evidence of the Fano resonance effect is found in the A(g)(1) mode with an asymmetric phonon line shape that occurs because of composite electron-phonon scattering due to the onset of metallic fractions in the system. The evolution of the Fano line shape with temperature affirms the existence of nanoscale phase separation and the prominence of orbitally disrupted metallic regions above 100 K. Anomalies in the evolution of the line width of the A(g)(1) Raman mode with temperature are observed around 100 K where these compounds show an orbital order/disorder transition. These anomalies manifest mutual coupling of orbital degrees of freedom to lattice degrees of freedom.  相似文献   

4.
Dimensionality is a central concept in developing the theory of low-dimensional physics.However,previous research on dimensional crossover in the context of a Bose-Einstein condensate(BEC) has focused on the single-component BEC.To our best knowledge,further consideration of the two-component internal degrees of freedom on the effects of dimensional crossover is still lacking.In this work,we are motivated to investigate the dimensional crossover in a three-dimensional(3D) Rabi-coupled two-compon...  相似文献   

5.
In echo experiments, imperfect time-reversal operations are performed on a subset of the total number of degrees of freedom. To capture the physics of these experiments, we introduce a partial fidelity M(B)(t), the Boltzmann echo, where only part of the system's degrees of freedom can be time reversed. We present a semiclassical calculation of M(B)(t). We show that, as the time-reversal operation is performed more and more accurately, the decay rate of M(B)(t) saturates at a value given by the decoherence rate of the controlled degrees of freedom due to their coupling to uncontrolled ones. We connect these results with NMR spin echo experiments.  相似文献   

6.
7.
The FPU problem, i.e., the problem of energy equipartition among normal modes in a weakly nonlinear lattice, is here studied in dimension two, more precisely in a model with triangular cell and nearest-neighbors Lennard-Jones interaction. The number n of degrees of freedom ranges from 182 to 6338. Energy is initially equidistributed among a small number n(0) of low frequency modes, with n(0) proportional to n. We study numerically the time evolution of the so-called spectral entropy and the related "effective number" n(eff) of degrees of freedom involved in the dynamics; in this (rather typical) way we can estimate, for each n and each specific energy (energy per degree of freedom) epsilon, the time scale T(n)(epsilon) for energy equipartition. Numerical results indicate that in the thermodynamic limit the equipartition times are short: more precisely, for large n at fixed epsilon we find a limit curve T(infinity)(epsilon), and T(infinity) grows only as epsilon(-1) for small epsilon. Larger equipartition times are obtained by lowering epsilon, at fixed n, below a crossover value epsilon(c)(n). However, epsilon(c) appears to vanish by increasing n (faster than 1n), and the total energy E=nepsilon, rather than epsilon, appears to be the relevant variable when n is large and epsilon相似文献   

8.
We show that the unusual doping dependence of the isotope effects on transition temperature and zero temperature in-plane penetration depth naturally follows from the doping driven 3D-2D crossover and the 2D quantum superconductor to insulator transition in the underdoped limit. Since lattice distortions are the primary consequence of isotope substitution, our analysis clearly reveals the strong involvement of lattice degrees of freedom in mediating superconductivity.  相似文献   

9.
李艳 《物理学报》2014,63(6):66701-066701
利用量子旋转场理论详细研究了从光晶格中释放的超冷玻色气体的空间密度-密度关联函数.由于量子旋转场理论充分考虑了光晶格中冷原子气体的粒子数涨落和相位效应,该理论能有效应用于具有强相互作用的冷原子系统,从而光晶格处于超流态到绝缘态逐渐过渡过程中的超冷原子气体的关联特性在这一理论体系下都得到了很好的描述.结果表明:随着超冷玻色气体逐渐从绝缘态向超流态过渡,其密度-密度关联图样中连续对角斜线也逐渐向分散的尖峰过渡,理论结果与目前实验观测到的结果符合.除此以外,上述密度-密度关联的结果中还包含了超冷原子系统量子耗散效应,相关结论与目前已有的理论和实验一致.  相似文献   

10.
S. K. Ghoshal  S. Dattagupta 《Pramana》1998,51(3-4):519-537
We present a spring-defect model in 3-dimensions to describe the connection between elastic distortion and interstitial carbon ordering associated with phase transition from a body centred cubic (BCC) to body centered tetragonal (BCT) structure in BCC metals such as α-iron. The presence or the absence of the carbon is modelled in terms of a pseudo spinŝ=+1or -l.An Ising interaction between carbon atoms is recovered after eliminating the lattice degrees of freedom, which is longranged. The coupling between the spin and lattice degrees of freedom allows for a systematic study of ferroelasticity and the variation of the lattice parameter with carbon concentration. The mean field results for the paraelastic to ferroelastic transition, lattice parameter and static compliance are presented. The significant feature of this calculation is not only a derivation of the defect-defect interaction, but also an explicit calculation of the strain dipole tensor associated with each defect, from a microscopic model.  相似文献   

11.
A Monte Carlo procedure is constructed for lattice gauge theories with fermions by replacing integration over fermion degrees of freedom in the path integral by conventional integration over effective boson degrees of freedom. The method is applied to gauge theories over two discrete subgroups of SU(2).  相似文献   

12.
The quasi-particle model of the quark–gluon plasma (QGP) is revisited here with a new method, different from earlier studies, one without the need of a temperature dependent bag constant and other effects such as confinement, effective degrees of freedom etc. Our model has only one system dependent parameter and shows a surprisingly good fit to the lattice results for the gluon plasma, and for 2-flavor, 3-flavor and (2+1)-flavor QGP. The basic idea is first to evaluate the energy density ε from the grand partition function of quasi-particle QGP, and then derive all other thermodynamic functions from ε. Quasi-particles are assumed to have a temperature dependent mass equal to the plasma frequency. Energy density, pressure and speed of sound at zero chemical potential are evaluated and compared with the available lattice data. We further extend the model to a finite chemical potential, without any new parameters, to obtain the quark density, quark susceptibility etc., and the model fits very well with the lattice results on 2-flavor QGP. PACS 12.38.Mh; 12.38.Gc; 05.70.Ce; 52.25.Kn  相似文献   

13.
We derive a realistic microscopic model for doped colossal magnetoresistance manganites, which includes the dynamics of charge, spin, orbital and lattice degrees of freedom on a quantum mechanical level. The model respects the SU(2) spin symmetry and the full multiplet structure of the manganese ions within the cubic lattice. Concentrating on the hole doped domain ( 0≤x≤0.5) we study the influence of the electron-lattice interaction on spin and orbital correlations by means of exact diagonalisation techniques. We find that the lattice can cause a considerable suppression of the coupling between spin and orbital degrees of freedom and show how changes in the magnetic correlations are reflected in dynamic phonon correlations. In addition, our calculation gives detailed insights into orbital correlations and demonstrates the possibility of complex orbital states. Received 4 September 2002 / Received in final form 8 November 2002 Published online 31 December 2002  相似文献   

14.
Quantum groups play the role of symmetries of integrable theories in two dimensions. They may be detected on the classical level as Poisson-Lie symmetries of the corresponding phase spaces. We discuss specifically the Wess-Zumino-Witten conformally invariant quantum field model combining two chiral parts which describe the left- and right-moving degrees of freedom. On one hand, the quantum group plays the role of the symmetry of the chiral components of the theory. On the other hand, the model admits a lattice regularization (in Minkowski space) in which the current algebra symmetry of the theory also becomes quantum, providing the simplest example of a quantum group symmetry coupling space-time and internal degrees of freedom. We develop a free field approach to the representation theory of the lattice sl (2)-based current algebra and show how to use it to rigorously construct an exact solution of the quantum SL (2) WZW model on lattice.  相似文献   

15.
We present a fermion model that is, as we suggest, a natural 2D analogue of the Luttinger model. We derive this model as a partial continuum limit of a 2D spinless lattice fermion system with local interactions and away from half filling. In this derivation, we use certain approximations that we motivate by physical arguments. We also present mathematical results that allow an exact treatment of parts of the degrees of freedom of this model by bosonization, and we propose to treat the remaining degrees of freedom by mean field theory.  相似文献   

16.
The Trotter-Suzuki transformation has been used to obtain the classical representation ford-dimensional lattice systems with boson and fermion degrees of freedom. A Monte Carlo algorithm for the equivalent (d+1)-dimensional classical system is presented. Numerical results are shown for the Heisenberg-spin-glass, the XY model and the spinless fermion lattice gas in two dimensions.  相似文献   

17.
R. LEMUS 《Molecular physics》2013,111(18):2795-2814
The vibron model approximation to take into account anharmonic effects in periodic systems is discussed. This is achieved by considering a simple one-dimensional molecular crystal with four degrees of freedom. In this case the lattice dynamical treatment is separated into two sets of modes, the modes associated to the molecular degrees of freedom and those corresponding to the motions of the centre of mass of the molecules. The non-interacting molecular modes are studied in detail, and analytical expressions for the energies and wave functions for the two-phonon manifold are obtained. A local-normal mode transition as a function of the interaction parameters is identified, similar to that in isolated molecular systems.  相似文献   

18.
We show that one-dimensional topological objects (kinks) are natural degrees of freedom for an antiferromagnetic Ising model on a triangular lattice. Its ground states and the coexistence of spin ordering with an extensive zero-temperature entropy can easily be understood in terms of kinks forming a hard-sphere liquid. Using this picture we explain effects of quantum spin dynamics on that frustrated model, which we also study numerically.  相似文献   

19.
Monopoles which carry both electro- and chromomagnetic charge are described by introducing new degrees of freedom into the hamiltonian form of SU(3)color × U(1)em lattice gauge theory. The monopoles we discuss exist as classical solutions in the SU(5) grand unified theory. The lattice theory allows us to describe the properties of these monopoles at low energies, where the color forces are strong. Our results are in agreement with a previous analysis by Coleman.  相似文献   

20.
Thermodynamic properties of systems with coupled magnetic and lattice degrees of freedom are analyzed by the numerical spin-lattice dynamics (SLD) method. A scheme of numerical integration is developed for SLD equations in a thermostat, that follows the earlier formulated approaches and is modified to describe systems with realistic interatomic interactions. The method proposed allows one to calculate the spectral density of oscillations, heat capacity, magnetization, and thermal expansion coefficient within a single scheme. It is established that, due to short-range magnetic order, the interplay between magnetic and lattice degrees of freedom contributes to the thermodynamic properties of the system even in the paramagnetic state. It is shown that there exist two mechanisms how the spin-lattice interaction influences the thermodynamic properties: static and dynamic mechanisms; the first is determined by its contribution to the thermal expansion of the lattice, and the second, by the dynamic interaction between magnetic moments and crystal lattice vibrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号