首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Three new compounds Ca(HF2)2, Ba4F4(HF2)(PF6)3 and Pb2F2(HF2)(PF6) were obtained in the system metal(II) fluoride and anhydrous HF (aHF) acidified with excessive PF5. The obtained polymeric solids are slightly soluble in aHF and they crystallize out of their aHF solutions. Ca(HF2)2 was prepared by simply dissolving CaF2 in a neutral aHF. It represents the second known compound with homoleptic HF environment of the central atom besides Ba(H3F4)2. The compounds Ba4F4(HF2)(PF6)3 and Pb2F2(HF2)(PF6) represent two additional examples of the formation of a polymeric zigzag ladder or ribbon composed of metal cation and fluoride anion (MF+)n besides PbF(AsF6), the first isolated compound with such zigzag ladder. The obtained new compounds were characterized by X-ray single crystal diffraction method and partly by Raman spectroscopy. Ba4F4(HF2)(PF6)3 crystallizes in a triclinic space group P1¯ with a=4.5870(2) Å, b=8.8327(3) Å, c=11.2489(3) Å, α=67.758(9)°, β=84.722(12), γ=78.283(12)°, V=413.00(3) Å3 at 200 K, Z=1 and R=0.0588. Pb2F2(HF2)(PF6) at 200 K: space group P1¯, a=4.5722(19) Å, b=4.763(2) Å, c=8.818(4) Å, α=86.967(10)°, β=76.774(10)°, γ=83.230(12)°, V=185.55(14) Å3, Z=1 and R=0.0937. Pb2F2(HF2)(PF6) at 293 K: space group P1¯, a=4.586(2) Å, b=4.781(3) Å, c=8.831(5) Å, α=87.106(13)°, β=76.830(13)°, γ=83.531(11)°, V=187.27(18) Å3, Z=1 and R=0.072. Ca(HF2)2 crystallizes in an orthorhombic Fddd space group with a=5.5709(6) Å, b=10.1111(9) Å, c=10.5945(10) Å, V=596.77(10) Å3 at 200 K, Z=8 and R=0.028.  相似文献   

2.
In the system BaF2/BF3/PF5/anhydrous hydrogen fluoride (aHF) a compound Ba(BF4)(PF6) was isolated and characterized by Raman spectroscopy and X-ray diffraction on the single crystal. Ba(BF4)(PF6) crystallizes in a hexagonal space group with a=10.2251(4) Å, c=6.1535(4) Å, V=557.17(5) Å3 at 200 K, and Z=3. Both crystallographically independent Ba atoms possess coordination polyhedra in the shape of tri-capped trigonal prisms, which include F atoms from BF4 and PF6 anions. In the analogous system with AsF5 instead of PF5 the compound Ba(BF4)(AsF6) was isolated and characterized. It crystallizes in an orthorhombic Pnma space group with a=10.415(2) Å, b=6.325(3) Å, c=11.8297(17) Å, V=779.3(4) Å3 at 200 K, and Z=4. The coordination around Ba atom is in the shape of slightly distorted tri-capped trigonal prism which includes five F atoms from AsF6 and four F atoms from BF4 anions. When the system BaF2/BF3/AsF5/aHF is made basic with an extra addition of BaF2, the compound Ba2(BF4)2(AsF6)(H3F4) was obtained. It crystallizes in a hexagonal P63/mmc space group with a=6.8709(9) Å, c=17.327(8) Å, V=708.4(4) Å3 at 200 K, and Z=2. The barium environment in the shape of tetra-capped distorted trigonal prism involves 10 F atoms from four BF4, three AsF6 and three H3F4 anions. All F atoms, except the central atom in H3F4 moiety, act as μ2-bridges yielding a complex 3-D structural network.  相似文献   

3.
Two new complex vanadyl(IV)phosphates Na2MVO(PO4)2 (M=Ca, Sr) were synthesized in evacuated quartz ampoules and investigated by means of X-ray diffraction, electron microscopy, DTA, ESR and magnetic susceptibility measurements. The crystal structure of Na2SrVO(PO4)2 was solved ab initio from X-ray powder diffraction data. Both compounds are isostructural: a=10.5233(3) Å, b=6.5578(2) Å, c=10.0536(3) Å and a=10.6476(3) Å, b=6.6224(2) Å, c=10.2537(3) Å for Ca and Sr, respectively; S.G. Pnma, Z=4. The compounds have a three-dimensional structure consisting of V4+O6 octahedra connected by PO4 tetrahedra via five of the six vertexes forming a framework with cross-like channels. The strontium and sodium atoms are located in the channels in an ordered manner. Electron diffraction as well as high-resolution electron microscopy confirmed the structure solution. The new vanadylphosphates are Curie-Weiss paramagnets in a wide temperature range down to 2 K with θ=12 and 5 K for Ca and Sr phases, respectively.  相似文献   

4.
The compound (NpO2)2(SO4)(H2O)4 was synthesized by evaporation of a Np5+ sulfate solution. The crystal structure was determined using single crystal X-ray diffraction and refined to an R1=0.0310. (NpO2)2(SO4)(H2O)4 crystallizes in triclinic space group P-1, a=8.1102(7) Å, b=8.7506(7) Å, c=16.234(1) Å, α=90.242(2)°, β=92.855(2)°, γ=113.067(2)°, V=1058.3(2) Å3, and Z=2. The structure contains neptunyl pentagonal bipyramids that share vertices through cation-cation interactions to form a sheet or cationic net. The sheet is decorated on each side by vertex sharing with sulfate tetrahedra, and adjacent sheets are linked together through hydrogen bonding. A graphical representation of (NpO2)2(SO4)(H2O)4 was constructed to facilitate the structural comparison to similar Np5+ compounds. The prevalence of the cationic nets in neptunyl sulfate compounds related to the overall stability of the structure is also discussed.  相似文献   

5.
This paper describes the hydrothermal syntheses of two isostructural metal bisphosphonates: M2(O3PC6H4PO3)(H2O)2 [M=CoII (1), NiII (2)]. Single-crystal structure determination of compound 1 revealed a pillared layered structure in which the phenyl groups connect the inorganic layers of cobalt phosphonate. Crystal data for 1: orthorhombic, space group Pnnm, a=19.306(5), b=4.8293(12), c=5.6390(14) Å, V=525.7(2) Å3, Z=2. Magnetic susceptibility data indicate that antiferromagnetic interactions are mediated in both cases.  相似文献   

6.
New compounds of the type M2(H2F3)(HF2)2(AF6) with M = Ca, A = As and M = Sr, A = As, P) were isolated. Ca2(H2F3)(HF2)2(AsF6) was prepared from Ca(AsF6)2 with repeated additions of neutral anhydrous hydrogen fluoride (aHF). It crystallizes in a space group P4322 with a = 714.67(10) pm, c = 1754.8(3) pm, V = 0.8963(2) nm3 and Z = 4. Sr2(H2F3)(HF2)2(AsF6) was prepared at room temperature by dissolving SrF2 in aHF acidified with AsF5 in mole ratio SrF2:AsF5 = 2:1. It crystallizes in a space group P4322 with a = 746.00(12) pm, c = 1805.1(5) pm, V = 1.0046(4) nm3 and Z = 4. Sr2(H2F3)(HF2)2(PF6) was prepared from Sr(XeF2)n(PF6)2 in neutral aHF. It crystallizes in a space group P4122 with a = 737.0(3) pm, c = 1793.7(14) pm, V = 0.9744(9) nm3 and Z = 4. The compounds M2(H2F3)(HF2)2(AF6) gradually lose HF at room temperature in a dynamic vacuum or during being powdered for recording IR spectra or X-ray powder ray diffraction patterns. All compounds are isotypical with coordination of nine fluorine atoms around a metal center forming a distorted Archimedian antiprism with one face capped. This is the first example of the compounds in which H2F3 and HF2 anions simultaneously bridge metal centers forming close packed three-dimensional network of polymeric compounds with low solubility in aHF. The HF2 anions are asymmetric with usual F?F distances of 227.3-228.5 pm. Vibrational frequency (ν1) of HF2 is close to that in NaHF2. The anion H2F3 exhibits unusually small F?F?F angle of 95.1°-97.6° most probably as a consequence of close packed structure.  相似文献   

7.
The three new isostructural coordination polymers poly[diaqua-(μ2-squarato-O,O′)-(μ2-4,4′-bipyridine-N,N′)Me(II)] hydrate (Me=Fe, Co, Ni) were prepared by hydrothermal reaction. All compounds are isostructural and crystallize in the monoclinic space group P21/c with 4 formula units in the unit cell (a=18.893 (1) Å, b=11.450 (1) Å, c=8.0985 (4) Å, β=93.032 (5)°, V=1749.5 (2) Å3, [Fe(C4O4)(C10H8)(H2O)2]·(H2O)3; a=18.937 (1) Å, b=11.342 (1) Å, c=8.0545 (5) Å, β=91.83 (1)°, V=1725.3 (2) Å3, [Co(C4O4)(C10H8)(H2O)2] · (H2O)3; a=18.271 (1) Å, b=11.340 (1) Å, c=7.8946 (4) Å, β=90.69 (5)°, V=1633.1 (2) Å3, [Ni(C4O4)(C10H8)(H2O)2](H2O)1.7). In the crystal structures the metal atoms are coordinated by two squarate dianions, two 4,4′-bipyridine ligands and two water molecules. The metal atoms are connected via the squarate dianions and the 4,4′-bipyridine ligands into layers, which interpenetrate forming a three-dimensional coordination network. This arrangement yields channels in which additional water molecules are embedded. Thermoanalytic investigations show that upon heating the channel water is removed in the first step and that the water coordinated to the metal atoms is emitted in the second step. Both steps are fully reversible with the former reaction proceeding via a topotactic reaction. The hydration and dehydration of the compounds are accompanied with a continuous change of the color of the materials. The de- and reintercalation processes were investigated using single crystal structure analysis, X-ray powder diffraction, temperature-dependent X-ray powder diffraction, simultaneous differential thermoanalysis and thermogravimetry coupled to mass spectroscopy, differential scanning calorimetry and time-dependent UV-Vis spectroscopy. The results of the investigations are discussed and compared with those for the previously reported manganese compound.  相似文献   

8.
Two uranyl tellurates, AgUO2(HTeO5) (1) and Pb2UO2(TeO6) (2), were synthesized under hydrothermal conditions and were structurally, chemically, and spectroscopically characterized. 1 crystallizes in space group Pbca, a=7.085(2) Å, b=11.986(3) Å, c=13.913(4) Å, V=1181.5(5) Å3, Z=8; 2 is in P2(1)/c, a=5.742(1) Å, b=7.789(2) Å, c=7.928(2) Å, V=90.703(2) Å3, and Z=2. These are the first structures reported for uranyl compounds containing tellurate. The U6+ cations are present as (UO2)2+ uranyl ions that are coordinated by O atoms to give pentagonal and square bipyramids in compounds 1 and 2, respectively. The structural unit in 1 is a sheet consisting of chains of edge-sharing uranyl pentagonal bipyramids that are one bipyramid wide, linked through the dimers of TeO6 octahedra. In 2, uranyl square bipyramids share each of their equatorial vertices with different TeO6 octahedra, giving a sheet with the autunite-type topology. Sheets in 1 and 2 are connected through the low-valence cations that are located in the interlayer region. The structures of 1 and 2 are compared to those of uranyl compounds containing octahedrally coordinated cations.  相似文献   

9.
Single crystals of new oxyborates, Mg5NbO3(BO3)3 and Mg5TaO3(BO3)3, were prepared at 1370 °C in air using B2O3 as a flux. They were colorless and transparent with block shapes. X-ray diffraction analysis of the single crystals revealed Mg5NbO3(BO3)3 and Mg5TaO3(BO3)3 to be isostructural. The X-ray diffraction reflections were indexed to the orthorhombic Pnma (No. 62) system with a=9.3682(3) Å, b=9.4344(2) Å, c=9.3379(3) Å and Z=4 for Mg5NbO3(BO3)3 and a=9.3702(3) Å, b=9.4415(3) Å, c=9.3301(2) Å and Z=4 for Mg5TaO3(BO3)3. The crystal structures of Mg5NbO3(BO3)3 and Mg5TaO3(BO3)3 are novel warwickite-type superstructures having ordered arrangements of Mg and Nb/Ta atoms. Polycrystals of Mg5NbO3(BO3)3 prepared by solid state reaction at 1200 °C in air showed broad blue-to-green emission with a peak wavelength of 470 nm under 270 nm ultraviolet excitation at room temperature.  相似文献   

10.
Two organic-inorganic hybrid compounds, Ga2(4,4′-bpy)(PO4)2, 1, and Ga2(4,4′-bpy)(AsO4)2, 2, have been synthesized under hydrothermal conditions and structurally characterized by single-crystal X-ray diffraction. The two compounds are isostructural and crystallize in the triclinic space group (No. 2) with a=4.9723(9) Å, b=5.770(1) Å, c=11.812(2) Å, α=78.268(3)°, β=89.159(3)° γ=88.344(3)°, V=331.7(2) Å3, Z=1, and R1=0.0377 for 1, and a=5.1111(7) Å, b=5.9327(8) Å, c=11.788(2) Å, α=79.497(2)°, β=88.870(2)°, γ=88.784(2)°, V=351.3(2) Å3, and R1=0.0264 for 2. The structure consists of neutral sheets of GaXO4 (X=P or As) which are pillared through 4,4′-bipyridine ligands. Each oxide layer, which is formed only by four-membered rings, is constructed from corner-sharing GaO4N trigonal bipyramids and XO4 tetrahedra. The title compounds are two of the few examples in which the gallium atoms are exclusively five-coordinate.  相似文献   

11.
The quaternary alkali-metal gallium selenostannates, Na2−xGa2−xSn1+xSe6 and AGaSnSe4 (A=K, Rb, and Cs), were synthesized by reacting alkali-metal selenide, Ga, Sn, and Se with a flame melting-rapid cooling method. Na2−xGa2−xSn1+xSe6 crystallizes in the non-centrosymmetric space group C2 with cell constants a=13.308(3) Å, b=7.594(2) Å, c=13.842(3) Å, β=118.730(4)°, V=1226.7(5) Å3. α-KGaSnSe4 crystallizes in the tetragonal space group I4/mcm with a=8.186(5) Å and c=6.403(5) Å, V=429.1(5) Å3. β-KGaSnSe4 crystallizes in the space group P21/c with cell constants a=7.490(2) Å, b=12.578(3) Å, c=18.306(5) Å, β=98.653(5)°, V=1705.0(8) Å3. The unit cell of isostructural RbGaSnSe4 is a=7.567(2) Å, b=12.656(3) Å, c=18.277(4) Å, β=95.924(4)°, V=1741.1(7) Å3. CsGaSnSe4 crystallizes in the orthorhombic space group Pmcn with a=7.679(2) Å, b=12.655(3) Å, c=18.278(5) Å, V=1776.1(8) Å3. The structure of Na2−xGa2−xSn1+xSe6 consists of a polar three-dimensional network of trimeric (Sn,Ga)3Se9 units with Na atoms located in tunnels. The AGaSnSe4 possess layered structures. The compounds show nearly the same Raman spectral features, except for Na2−xGa2−xSn1+xSe6. Optical band gaps, determined from UV-Vis spectroscopy, range from 1.50 eV in Na2−xGa2−xSn1+xSe6 to 1.97 eV in CsGaSnSe4. Cooling of the melts of KGaSnSe4 and RbGaSnSe4 produces only kinetically stable products. The thermodynamically stable product is accessible under extended annealing, which leads to the so-called γ-form (BaGa2S4-type) of these compounds.  相似文献   

12.
A tin(II) squarate Sn2O(C4O4)(H2O) was synthesized by hydrothermal technique. It crystallizes in the monoclinic system, space group C2/m (no. 12) with lattice parameters a=12.7380(9) Å, b=7.9000(3) Å, c=8.3490(5) Å, β=121.975(3)°, V=712.69(7) Å3, Z=4. The crystal structure determined with an R=0.042 factor, consists of [(Sn4O10)(H2O)2] units connected from one another in the [101] and [010] directions via squarate groups to form layers separated by Sn(II) lone pairs. This compound presents the same remarkable structural arrangement as observed in the tin-oxo-fluoride Sn2[Sn2O2F4] inorganic compound with Sn(II) lone pairs E(1) and E(2) concentrated in large rectangular-shape tunnels running along [001] direction.  相似文献   

13.
The crystal chemistry and crystallography of the compounds SrR2CuO5 (Sr-121, R=lanthanides) were investigated using the powder X-ray Rietveld refinement technique. Among the 11 compositions studied, only R=Dy and Ho formed the stable SrR2CuO5 phase. SrR2CuO5 was found to be isostructural with the “green phase”, BaR2CuO5. The basic structure is orthorhombic with space group Pnma. The lattice parameters for SrDyCuO5 are a=12.08080(6) Å, b=5.60421(2) Å, c=7.12971(3) Å, V=482.705(4) Å3, and Z=8; and for the Ho analog are a=12.03727(12) Å, b=5.58947(7) Å, c=7.10169(7) Å, V=477.816(9) Å3, and Z=8. In the SrR2CuO5 structure, each R is surrounded by seven oxygen atoms, forming a monocapped trigonal prism (RO7). The isolated CuO5 group forms a distorted square pyramid. Consecutive layers of prisms are stacked in the b-direction. Bond valence calculations imply that residual strain is largely responsible for the narrow stability of the SrR2CuO5 phases with R=Dy and Ho only. X-ray powder reference diffraction patterns for SrDy2CuO5 and SrHo2CuO5 were determined.  相似文献   

14.
Three new compounds, Cs2Bi2ZnS5, Cs2Bi2CdS5, and Cs2Bi2MnS5, have been synthesized from the respective elements and a reactive flux Cs2S3 at 973 K. The compounds are isostructural and crystallize in a new structure type in space group Pnma of the orthorhombic system with four formula units in cells of dimensions at 153 K of a=15.763(3), b=4.0965(9), c=18.197(4) Å, V=1175.0(4) Å3 for Cs2Bi2ZnS5; a=15.817(2), b=4.1782(6), c=18.473(3)  Å, V=1220.8(3)  Å3 for Cs2Bi2CdS5; and a=15.830(2), b=4.1515(5), c=18.372(2) Å, V=1207.4(2) Å3 for Cs2Bi2MnS5. The structure is composed of two-dimensional 2[Bi2MS52−] (M=Zn, Cd, Mn) layers that stack perpendicular to the [100] axis and are separated by Cs+ cations. The layers consist of edge-sharing 1[Bi2S66−] and 1[MS34−] chains built from BiS6 octahedral and MS4 tetrahedral units. Two crystallographically unique Cs atoms are coordinated to S atoms in octahedral and monocapped trigonal prismatic environments. The structure of Cs2Bi2MS5, is related to that of Na2ZrCu2S4 and those of the AMMQ3 materials (A=alkali metal, M=rare-earth or Group 4 element, M′= Group 11 or 12 element, Q=chalcogen). First-principles theoretical calculations indicate that Cs2Bi2ZnS5 and Cs2Bi2CdS5 are semiconductors with indirect band gaps of 1.85 and 1.75 eV, respectively. The experimental band gap for Cs2Bi2CdS5 is ≈1.7 eV, as derived from its optical absorption spectrum.  相似文献   

15.
Single crystals of NaY(PO3)4 and Ag0.07Na0.93Y(PO3)4 have been synthesized by flux method. These new compounds turned out to be isostructural to NaLn(PO3)4, with Ln=La, Nd, Gd and Er [monoclinic, P21/n, a=7.1615(2) Å, b=13.0077(1) Å, c=9.7032 (3) Å, β=90.55 (1)°, V=903.86(14) Å3 and Z=4]. The structure is based upon long polyphosphate chains running along the shortest unit-cell direction and made up of PO4 tetrahedra sharing two corners, linked to yttrium and sodium polyhedra. Infrared and Raman spectra at room temperature confirms this atomic arrangement. The luminescence of silver ions was reported in metaphosphate of composition Ag0.07Na0.93Y(PO3)4. One luminescent centre was detected and assigned to single Ag+ ions.  相似文献   

16.
Single crystals of [Cu(men)2(BF4)2] (men = N-methyl-1,2-diaminoethane) (1) were isolated from an aqueous-ethanolic system Cu2+-men-BF4. The crystal structure of 1 consists of [Cu(men)2(BF4)2] molecules. Copper ion exhibits usual distorted octahedral coordination; there are two coordinated men ligands in the equatorial plane with Cu-N bonds of 2.0451(12) and 2.0035(12) Å, while the axial positions are occupied by fluorine atoms from BF4 anions with Cu-F bond of 2.5091(11) Å. The packing of the [Cu(men)2(BF4)2] molecules is governed by N-H?F type hydrogen bonds. The measured ESR spectrum corroborated the presence of Jahn-Teller anisotropy of Cu(II) with g|| = 2.20 and g = 2.06. The magnetic studies in the temperature range 300-2 K reveal that 1 follows the Curie-Weiss law with parameters = 2.1612(1) and θ = −0.233(1) K suggesting the presence of weak antiferomagnetic interactions.  相似文献   

17.
The reaction of Lu3+ or Yb3+ and H5IO6 in aqueous media at 180 °C leads to the formation of Yb(IO3)3(H2O) or Lu(IO3)3(H2O), respectively, while the reaction of Yb metal with H5IO6 under similar reaction conditions gives rise to the anhydrous iodate, Yb(IO3)3. Under supercritical conditions Lu3+ reacts with HIO3 and KIO4 to yield the isostructural Lu(IO3)3. The structures have been determined by single-crystal X-ray diffraction. Crystallographic data are (MoKα, λ=0.71073 Å): Yb(IO3)3, monoclinic, space group P21/n, a=8.6664(9) Å, b=5.9904(6) Å, c=14.8826(15) Å, β=96.931(2)°, V=766.99(13), Z=4, R(F)=4.23% for 114 parameters with 1880 reflections with I>2σ(I); Lu(IO3)3, monoclinic, space group P21/n, a=8.6410(9), b=5.9961(6), c=14.8782(16) Å, β=97.028(2)°, V=765.08(14), Z=4, R(F)=2.65% for 119 parameters with 1756 reflections with I>2σ(I); Yb(IO3)3(H2O), monoclinic, space group C2/c, a=27.2476(15), b=5.6296(3), c=12.0157(7) Å, β=98.636(1)°, V=1822.2(2), Z=8, R(F)=1.51% for 128 parameters with 2250 reflections with I>2σ(I); Lu(IO3)3(H2O), monoclinic, space group C2/c, a=27.258(4), b=5.6251(7), c=12.0006(16) Å, β=98.704(2)°, V=1818.8(4), Z=8, R(F)=1.98% for 128 parameters with 2242 reflections with I>2σ(I). The f elements in all of the compounds are found in seven-coordinate environments and bridged with monodentate, bidentate, or tridentate iodate anions. Both Lu(IO3)3(H2O) and Yb(IO3)3(H2O) display distinctively different vibrational profiles from their respective anhydrous analogs. Hence, the Raman profile can be used as a complementary diagnostic tool to discern the different structural motifs of the compounds.  相似文献   

18.
A new vanadium(III) oxalatophosphate has been synthesized hydrothermally and characterized by single-crystal X-ray diffraction and thermogravimetric analysis. It crystallizes in the triclinic space group with a=11.604(2) Å, b=12.391(2) Å, c=15.220(3) Å, α=71.090(3)°, β=82.630(3)°, γ=62.979(3)°, V=1843.8(5) Å3 and Z=2. The structure consists of V6(HPO4)6 double 6-ring (D6R) units connected by coordinating C2O42− and PO43− anions to form anionic sheets in the ab plane with charge-compensating quadruply protonated 1,4-bis(3-aminopropyl)piperazinium cations and water molecules between the sheets. It is one of the few compounds with 2D layer structures and the second example containing D6R units in the system of metal oxalatophosphates. The iron analogue was also synthesized.  相似文献   

19.
The hydrothermal syntheses, single crystal structures, and some properties of Ba2MnIIMn2III(SeO3)6 and PbFe2(SeO3)4 are reported. These related phases contain three-dimensional frameworks of vertex (FeO6) and vertex/edge linked (MnO6) octahedra and SeO3 pyramids. In each case, the MO6/SeO3 framework encloses two types of 8 ring channels, one of which encapsulates the extra-framework cations and one of which provides space for the SeIV lone pairs. Crystal data: Ba2Mn3(SeO3)6, Mr=1201.22, monoclinic, P21/c (No. 14), a=5.4717 (3) Å, b=9.0636 (4) Å, c=17.6586 (9) Å, β=94.519 (1)°, V=873.03 (8) Å3, Z=2, R(F)=0.031, wR(F2)=0.070; PbFe2(SeO3)4, Mr=826.73, triclinic, (No. 2), a=5.2318 (5) Å, b=6.7925 (6) Å, c=7.6445 (7) Å, α=94.300 (2)°, β=90.613 (2)°, γ=95.224 (2)°, V=269.73 (4) Å3, Z=1, R(F)=0.051, wR(F2)=0.131.  相似文献   

20.
The compounds M[PO2(OH)2]2·2H2O (M=Mg, Mn, Fe, Co, Ni, Zn, Cd) were prepared from super-saturated aqueous solutions at room temperature. Single-crystal X-ray structure investigations of members with M=Ni, Zn, Cd were performed at 295 and 120 K. The space-group symmetry is P21/n, Z=2. The unit-cell parameters are at 295/120 K for M=Ni: a=7.240(2)/7.202(2), b=9.794(2)/9.799(2), c=5.313(1)/5.285(1) Å, β=94.81(1)/94.38(1)°, V=375.4/371.9 Å3; M=Zn: a=7.263(2)/7.221(2), b=9.893(2)/9.899(3), c=5.328(1)/5.296(2) Å, β=94.79(1)/94.31(2)°, V=381.5/377.5 Å3; M=Cd: a=7.356(2)/7.319(2), b=10.416(2)/10.423(3), c=5.407(1)/5.371(2) Å, β=93.85(1)/93.30(2)°, V=413.4/409.1 Å3. Layers of corner-shared MO6 octahedra and phosphate tetrahedra are linked by three of the four crystallographically different hydrogen bonds. The fourth hydrogen bond (located within the layer) is worth mentioning because of the short Oh?O bond distance of 2.57-2.61 Å at room temperature (2.56-2.57 Å at 120 K); only for M=Mg it is increased to 2.65 Å. Any marked temperature-dependent variation of the unit-cell dimension is observed only vertical to the layers. The analysis of the infrared (IR) spectroscopy data evidences that the internal PO4 vibrations are insensitive to the size and the electronic configuration of the M2+ ions. The slight strengthening of the intra-molecular P-O bonds in the Mg salt is caused by the more ionic character of the Mg-O bonds. All IR spectra exhibit the characteristic “ABC trio” for acidic salts: 2900-3180 cm−1 (A band), 2000-2450 cm−1 (B band) and 1550-1750 cm−1 (C band). Both the frequency and the intensity of the A band provide an evidence that the PO2(OH)2 groups in M[PO2(OH)2]2·2H2O compounds form weaker hydrogen bonds as compared with other acidic salts with comparable O?O bond distances of about 2.60 Å. The observed shift of the O-H stretching vibrations of the water molecule in the order M=Mg>Mn≈Fe≈Co>Ni>Zn≈Cd has been discussed with respect to the influence of both the character and the strength of M↔H2O interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号