首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
[Mg(HF)2](SbF6)2 and [Ca(HF)2](SbF6)2 monocrystals were grown from the corresponding hexafluoroantimonates(V) dissolved in anhydrous hydrogen fluoride. [Mg(HF)2](SbF6)2 crystallizes in the space group Pnma (no. 62) with a=1249.1(4) pm, b=1230.2(4) pm, c=699.1(2) pm, V=1.0742(6) nm3, Z=4. Magnesium is octahedrally coordinated by six fluorine atoms from which two belong to two HF molecules. The structure can be represented by alternating rows of magnesium and antimony atoms running parallel to the c-axis. Magnesium atoms are connected by cis bridging Sb(2)F6 units along the a-axis and by trans bridging Sb(1)F6 units along the b-axis. In this way a three-dimensional network is formed.[Ca(HF)2](SbF6)2 crystallizes in the space group P21/n (no. 14) with a=935.2(3) pm, b=1088.7(3) pm, c=1104.8(3) pm, β=106.697(5)°, V=1.0774(5) nm3, Z=4. The coordination sphere around the calcium atom consists of eight fluorine atoms which define the vertices of an Archimedean antiprism. The two HF molecules directly coordinate the calcium atom and their fluorine atoms are placed in the corners of different square faces of the Archimedean antiprism. The Ca-F(HF) distances are shorter than the Ca-F(Sb) distances. The Sb(1)F6 and Sb(2)F6 groups have four equatorial bridging fluorine atoms, while the Sb(3)F6 groups have only two bridging trans F ligands. The Ca atoms in the [−1,0,1] plane are connected by equatorial F ligands of Sb(1)F6 and Sb(2)F6 units, forming a [Ca(SbF6)+]n layer. These layers are connected by trans bridging Sb(3)F6 groups. HF molecules occupy the space between these layers and additionally contribute to the connection between the layers by hydrogen bonding.  相似文献   

2.
Ca(AsF3)(AsF6)2 was prepared by the reaction of CaF2 with excess AsF5 in AsF3 solvent. The compound crystallizes in an orthorhombic crystal system, space group Pnma, with a =1034.9(4) pm, b = 1001.7(4) pm and c = 1088.4(4) pm, V = 1.1283(8) nm3 and Z = 4. Calcium is coordinated to eight fluorine atoms, with six fluorine atoms located at the corners of a regular trigonal prism originating from six AsF6 units. Two rectangular faces of the trigonal prism are capped by fluorine atoms from two fluorine bridged AsF3 molecules. For the first time, AsF3 is shown to serve as a bridging ligand to two metal cations, with bridging distances of F(AsF3)-Ca = 241.1 and 243.2 pm. It was found, again for the first time, that the bridging As-F distances are shorter (172.4 and 173.1 pm) than the terminal As-F distance (184.5 pm). The Raman spectrum shows vibrational modes that are readily assigned to AsF3 and AsF6.  相似文献   

3.
In the system BaF2/BF3/PF5/anhydrous hydrogen fluoride (aHF) a compound Ba(BF4)(PF6) was isolated and characterized by Raman spectroscopy and X-ray diffraction on the single crystal. Ba(BF4)(PF6) crystallizes in a hexagonal space group with a=10.2251(4) Å, c=6.1535(4) Å, V=557.17(5) Å3 at 200 K, and Z=3. Both crystallographically independent Ba atoms possess coordination polyhedra in the shape of tri-capped trigonal prisms, which include F atoms from BF4 and PF6 anions. In the analogous system with AsF5 instead of PF5 the compound Ba(BF4)(AsF6) was isolated and characterized. It crystallizes in an orthorhombic Pnma space group with a=10.415(2) Å, b=6.325(3) Å, c=11.8297(17) Å, V=779.3(4) Å3 at 200 K, and Z=4. The coordination around Ba atom is in the shape of slightly distorted tri-capped trigonal prism which includes five F atoms from AsF6 and four F atoms from BF4 anions. When the system BaF2/BF3/AsF5/aHF is made basic with an extra addition of BaF2, the compound Ba2(BF4)2(AsF6)(H3F4) was obtained. It crystallizes in a hexagonal P63/mmc space group with a=6.8709(9) Å, c=17.327(8) Å, V=708.4(4) Å3 at 200 K, and Z=2. The barium environment in the shape of tetra-capped distorted trigonal prism involves 10 F atoms from four BF4, three AsF6 and three H3F4 anions. All F atoms, except the central atom in H3F4 moiety, act as μ2-bridges yielding a complex 3-D structural network.  相似文献   

4.
The Zintl phase Eu7Ga6Sb8 was obtained from a direct element combination reaction at 900°C. It crystallizes in the orthorhombic space group Pbca (No. 61) with a=15.6470(17) Å, b=17.2876(19) Å, c=17.9200(19) Å, and Z=8. In Eu7Ga6Sb8, the anionic framework forms infinite chains of [Ga6Sb8]14− which are arranged side by side to make a sheet-like arrangement but without linking. The sheets of chains are separated by Eu2+ atoms and also within the sheet, Eu2+ atoms fill the spaces between two chains. The chain is made up of homoatomic tetramers (Ga4)6+ and dimers (Ga2)4+ connected by Sb atoms. The compound is a narrow band-gap semiconductor with Eg∼0.6 eV and satisfies the classical Zintl concept. Extended Hückel band structure calculations confirm that the material is a semiconductor and suggest that the structure is stabilized by strong Ga-Ga covalent bonding interactions. Magnetic susceptibility measurements for Eu7Ga6Sb8 show that the Eu atoms are divalent and the compound has an antiferromagnetic transition at 9 K.  相似文献   

5.
Two new ternary ytterbium transition metal stannides, namely, Yb3CoSn6 and Yb4Mn2Sn5, have been obtained by solid-state reactions of the corresponding pure elements in welded tantalum tubes at high temperature. Their crystal structures have been established by single-crystal X-ray diffraction studies. Yb3CoSn6 crystallizes in the orthorhombic space group Cmcm (no. 63) with cell parameters of a=4.662(2), b=15.964(6), c=13.140(5) Å, V=978.0(6) Å3, and Z=4. Its structure features a three-dimensional (3D) open-framework composed of unusual [CoSn3] layers interconnected by zigzag Sn chains, forming large tunnels along the c-axis which are occupied by the ytterbium cations. Yb4Mn2Sn5 is monoclinic space group C2/m (no. 12) with cell parameters of a=16.937(2), b=4.5949(3), c=7.6489(7) Å, β=106.176(4)°, V=571.70(8) Å3, and Z=2. It belongs to the Mg5Si6 structure type and its anionic substructure is composed of parallel [Mn2Sn2] ladders interconnected by unusual zigzag [Sn3] chains, forming large tunnels along the c-axis, which are filled by the ytterbium cations. Band structure calculations based on density function theory methods were also made for both compounds.  相似文献   

6.
Hydrothermal synthesis in the K-Mo oxide system was investigated as a function of the pH of the reaction medium. Four compounds were formed, including two K2Mo4O13 phases. One is a new low-temperature polymorph, which crystallizes in the orthorhombic, space group Pbca, with Z=8 and unit cell dimensions a=7.544(1) Å, b=15.394(2) Å, c=18.568(3) Å. The other is the known triclinic K2Mo4O13, whose structure was re-determined from single crystal data; its cell parameters were determined as a=7.976(2) Å, b=8.345(2) Å, c=10.017(2) Å, α=107.104(3)°, β=102.885(3)°, γ=109.760(3)°, which are the standard settings of the crystal lattice. The orthorhombic phase converts endothermically into triclinic phase at ca. 730 K with a heat of transition of 8.31 kJ/mol.  相似文献   

7.
New indides SrAu3In3 and EuAu3In3 were synthesized by induction melting of the elements in sealed tantalum tubes. Both indides were characterized by X-ray diffraction on powders and single crystals. They crystallize with a new orthorhombic structure type: Pmmn, Z=2, a=455.26(9), b=775.9(2), c=904.9(2) pm, wR2=0.0425, 485 F2 values for SrAu3In3 and a=454.2(2), b=768.1(6), c=907.3(6) pm, wR2=0.0495, 551 F2 values for EuAu3In3 with 26 variables for each refinement. The gold and indium atoms build up three-dimensional [Au3In3] polyanionic networks, which leave distorted hexagonal channels for the strontium and europium atoms. Within the networks one observes Au2 atoms without Au-Au contacts and gold zig-zag chains (279 pm Au1-Au1 in EuAu3In3). The Au-In and In-In distances in EuAu3In3 range from 270 to 290 and from 305 to 355 pm. The europium atoms within the distorted hexagonal channels have coordination number 14 (8 Au+6 In). EuAu3In3 shows Curie-Weiss behavior above 50 K with an experimental magnetic moment of 8.1(1) μB/Eu atom. 151Eu Mössbauer spectra show a single signal at δ=−11.31(1) mm/s, compatible with divalent europium. No magnetic ordering was detected down to 3 K.  相似文献   

8.
The title compounds were isolated in well-crystallized form from samples with a substantial excess of antimony, annealed at temperatures slightly below the melting point of that element. Their crystal structures were determined from single-crystal diffractometer data. Pr9-xSb21-y and Nd9-xSb21-y crystallize with a new monoclinic structure type, Pearson symbol mS(62-5.4), space group Cm, Z=2 with a=2859.1(4) pm, b=426.3(1) pm, c=1356.1(2) pm, β=95.52(1)°, R=0.034 for 4351 structure factors and 188 variable parameters for Pr9-xSb21-y and a=2845(2) pm, b=424.7(8) pm, c=1345.9(9) pm, β=95.42(7)°, R=0.069 for 2928 F values and 188 variables for Nd9-xSb21-y. Of the 30 atomic sites, three show fractional occupancy corresponding to the compositions Pr8.303(5)Sb20.03(1) and Nd8.30(2)Sb19.98(9), respectively. A model for the order of occupied atomic sites with a tripled b-axis is proposed resulting in the ideal compositions Pr5Sb12 and Nd5Sb12. The holmium compound Ho2Sb5 has a Dy2Sb5-type structure: mP28, P21/m, a=1301.8(3) pm, b=414.9(1) pm, c=1451.1(2) pm, β=102.14(1)°, R=0.028 for 2573 F values and 86 variables. In both structure types most rare earth atoms have nine antimony neighbors forming tricapped trigonal prisms. The coordination polyhedra of the antimony atoms show a great variety, with a trigonal prism of rare earth atoms as one extreme case. The other extreme coordination of an antimony atom is a distorted octahedron formed by six antimony atoms. The differences and similarities of both structures are discussed. Chemical bonding within the antimony polyanions is analyzed on the basis of an extended Zintl-Klemm concept using bond-length-bond-strength relationships.  相似文献   

9.
The ternary antimonide CeNiSb3 has been prepared from an Sb flux or from reaction of Ce, NiSb, and Sb above 1123 K. It crystallizes in the orthorhombic space group Pbcm with Z=12 and lattice parameters a=12.6340(7) Å, b=6.2037(3) Å, and c=18.3698(9) Å at 193 K. Its structure consists of buckled square nets of Sb atoms and layers of highly distorted edge- and face-sharing NiSb6 octahedra. Located between the 2[Sb] and 2[NiSb2] layers are the Ce atoms, in monocapped square antiprismatic coordination. There is an extensive network of Sb-Sb bonding with distances varying between 3.0 and 3.4 Å. The structure is related to that of RECrSb3 but with a different stacking of the metal-centered octahedra. Resistivity measurements reveal a shallow minimum near 25 K that is suggestive of Kondo lattice behavior, followed by a sharp decrease below 6 K.  相似文献   

10.
The germanide Yb2Ru3Ge4 was synthesized from the elements using the Bridgman crystal growth technique. The monoclinic Hf2Ru3Si4 type structure was investigated by X-ray powder and single crystal diffraction: C2/c, Z=8, a=1993.0(3) pm, b=550.69(8) pm, c=1388.0(2) pm, β=128.383(9)°, wR2=0.0569, 2047 F2 values, and 84 variables. Yb2Ru3Ge4 contains two crystallographically independent ytterbium sites with coordination numbers of 18 and 17 for Yb1 and Yb2, respectively. Each ytterbium atom has three ytterbium neighbors at Yb-Yb distances ranging from 345 to 368 pm. The shortest interatomic distances occur for the Ru-Ge contacts. The three crystallographically independent ruthenium sites have between five and six germanium neighbors in distorted trigonal bipyramidal (Ru1Ge5) or octahedral (Ru2Ge6 and Ru3Ge6) coordination at Ru-Ge distances ranging from 245 to 279 pm. The Ru2 atoms form zig-zag chains running parallel to the b-axis at Ru2-Ru2 of 284 pm. The RuGe5 and RuGe6 units are condensed via common edges and faces leading to a complex three-dimensional [Ru3Ge4] network.  相似文献   

11.
NaPd3O4, Na2PdO3 and K3Pd2O4 have been prepared by solid-state reaction of Na2O2 or KO2 and PdO in sealed silica tubes. Crystal structures of the synthesized phases were refined by the Rietveld method from X-ray powder diffraction data. NaPd3O4 (space group Pmn, a=5.64979(6) Å, Z=2) is isostructural to NaPt3O4. It consists of NaO8 cubes and PdO4 squares, corner linked into a three-dimensional framework where the planes of neighboring PdO4 squares are perpendicular to each other. Na2PdO3 (space group C2/c, a=5.3857(1) Å, b=9.3297(1) Å, c=10.8136(2) Å, β=99.437(2)°, Z=8) belongs to the Li2RuO3-structure type, being the layered variant of the NaCl structure, where the layers of octahedral interstices filled with Na+ and Pd4+ cations alternate with Na3 layers along the c-axis. Na2PdO3 exhibits a stacking disorder, detected by electron diffraction and Rietveld refinement. K3Pd2O4, prepared for the first time, crystallizes in the orthorhombic space group Cmcm (a=6.1751(6) Å, b=9.1772(12) Å, c=11.3402(12) Å, Z=4). Its structure is composed of planar PdO4 units connected via common edges to form parallel staggered PdO2 strips, where potassium atoms are located between them. Magnetic susceptibility measurements of K3Pd2O4 reveal a Curie-Weiss behavior in the temperature range above 80 K.  相似文献   

12.
Three new compounds Ca(HF2)2, Ba4F4(HF2)(PF6)3 and Pb2F2(HF2)(PF6) were obtained in the system metal(II) fluoride and anhydrous HF (aHF) acidified with excessive PF5. The obtained polymeric solids are slightly soluble in aHF and they crystallize out of their aHF solutions. Ca(HF2)2 was prepared by simply dissolving CaF2 in a neutral aHF. It represents the second known compound with homoleptic HF environment of the central atom besides Ba(H3F4)2. The compounds Ba4F4(HF2)(PF6)3 and Pb2F2(HF2)(PF6) represent two additional examples of the formation of a polymeric zigzag ladder or ribbon composed of metal cation and fluoride anion (MF+)n besides PbF(AsF6), the first isolated compound with such zigzag ladder. The obtained new compounds were characterized by X-ray single crystal diffraction method and partly by Raman spectroscopy. Ba4F4(HF2)(PF6)3 crystallizes in a triclinic space group P1¯ with a=4.5870(2) Å, b=8.8327(3) Å, c=11.2489(3) Å, α=67.758(9)°, β=84.722(12), γ=78.283(12)°, V=413.00(3) Å3 at 200 K, Z=1 and R=0.0588. Pb2F2(HF2)(PF6) at 200 K: space group P1¯, a=4.5722(19) Å, b=4.763(2) Å, c=8.818(4) Å, α=86.967(10)°, β=76.774(10)°, γ=83.230(12)°, V=185.55(14) Å3, Z=1 and R=0.0937. Pb2F2(HF2)(PF6) at 293 K: space group P1¯, a=4.586(2) Å, b=4.781(3) Å, c=8.831(5) Å, α=87.106(13)°, β=76.830(13)°, γ=83.531(11)°, V=187.27(18) Å3, Z=1 and R=0.072. Ca(HF2)2 crystallizes in an orthorhombic Fddd space group with a=5.5709(6) Å, b=10.1111(9) Å, c=10.5945(10) Å, V=596.77(10) Å3 at 200 K, Z=8 and R=0.028.  相似文献   

13.
[Cu(XeF2)6](SbF6)2 crystallizes in the rhombohedral symmetry with a = 1003.6(2) pm, c = 2246.5(12) pm at 200 K and Z = 3, space group (No. 148). [Zn(XeF2)6](SbF6)2 is isostructural to [Cu(XeF2)6](SbF6)2 with a = 1007(2) pm and c = 2243(6) pm. The structures are characterized by isolated homoleptic [M(XeF2)6]2+ (M = Cu, Zn) cations and of [SbF6] octahedra.Reactions of M(SbF6)2 (M = Cu, Zn) with XeF2 in anhydrous hydrogen fluoride (aHF) and reactions of MF2 with Xe2F3SbF6 in aHF always yield a mixture of [M(XeF2)6](SbF6)2, Xe2F3SbF6 and MF2.  相似文献   

14.
A new Li-containing quaternary nitride, Li4Sr3Ge2N6, was obtained as single crystals from constituent elements in molten Na. It crystallizes in space group C2/m (No. 12) with a=6.1398(7) Å, b=10.021(1) Å, c=6.3130(7) Å, β=91.279(2)°, and Z=2. It contains the first example of isolated nitridogermanate anions of Ge2N610−, which is also the first example of edge-sharing tetrahedral [GeN4].  相似文献   

15.
X-ray single-crystal diffraction, high-temperature powder diffraction and differential thermal analysis at ambient and high pressure have been employed to study the crystal structure and phase transitions of guanidinium trichlorostannate, C(NH2)3SnCl3. At 295 K the crystal structure is orthorhombic, space group Pbca, Z=8, a=7.7506(2) Å, b=12.0958(4) Å and c=17.8049(6) Å, solved from single-crystal data. It is perovskite-like with distorted corner-linked SnCl6 octahedra and with ordered guanidinium cations in the distorted cuboctahedral voids. At 400 K the structure shows a first-order order-disorder phase transition. The space group is changed to Pnma with Z=4, a=12.1552(2) Å, b=8.8590(2) Å and c=8.0175(1) Å, solved from powder diffraction data and showing disordering of the guanidinium cations. At 419 K, the structure shows yet another first-order order-disorder transformation with disordering of the SnCl3 part. The space group symmetry is maintained as Pnma, with a=12.1786(2) Å, b=8.8642(2) Å and c=8.0821(2) Å. The thermodynamic parameters of these transitions and the p-T phase diagram have been determined and described.  相似文献   

16.
The structure of La6Mo8O33 has been determined from a triple pattern powder diffraction analysis. Two high-resolution neutron diffraction patterns collected at 1.594 and 2.398 Å and one X-rays were used. This molybdate crystallizes in a non-centrosymmetric monoclinic space group P21(N°4), Z=2,a=10.7411(3) Å, b=11.9678(3) Å, c=11.7722(3) Å, β=116.062 (1)°. La6Mo8O33 is an unusual ordered defect Scheelite. Hence, it should be described with cation vacancies and an extra oxygen atom following the formula: La62Mo8O32+1. This extra oxygen atom leads to a pyramidal environment, whereas the other molybdenum atoms present tetrahedral environment. A molybdenum tetrahedral is connecting to the pyramid, forming an [Mo2O9] unit.  相似文献   

17.
The rare earth metal-copper-indides RECu6In6 (RE=Y, Ce, Pr, Nd, Gd, Tb, Dy) were synthesized from the elements by arc-melting. Well-crystallized samples were obtained by slowly cooling the melted buttons from 1320 to 670 K in sealed silica tubes in a muffle furnace. They were investigated by X-ray diffraction on powders and single crystals: ThMn12 type, space group I4/mmm, Z=2, a=916.3(2), c=535.8(2) pm, wR2=0.063, 216 F2 values, 15 variables for YCu6In6, a=926.5(4), c=543.5(3) pm, wR2=0.064, 314 F2 values, 15 variables for CeCu6In6, a=925.7(4), c=540.1(3) pm, wR2=0.075, 219 F2 values, 15 variables for PrCu6In6, a=923.1(4), c=540.3(3) pm, wR2=0.071, 218 F2 values, 15 variables for NdCu6In6, a=917.7(4), c=540.2(3) pm, wR2=0.076, 207 F2 values, 15 variables for GdCu6In6, a=917.0(5), c=540.5(4) pm, wR2=0.062, 215 F2 values, 15 variables for TbCu6In6, a=915.2(8), c=540.7(7) pm, wR2=0.108, 218 F2 values, 15 variables for DyCu6In6. The structures have been refined with a split position (50% Cu+50% In) for the 8j site. They can be explained by a tetragonal body-centered packing of CN 20 polyhedra (10Cu+10In) around the rare earth atoms. The ordering models of the copper and indium atoms and the limitations/resolution of X-ray diffraction for this topic are discussed.  相似文献   

18.
Yb3Cu6Sn5, Yb5Cu11Sn8 and Yb3Cu8Sn4 compounds were prepared in sealed Ta crucibles by induction melting and subsequent annealing. The crystal structures of Yb3Cu6Sn5 and Yb5Cu11Sn8 were determined from single crystal diffractometer data: Yb3Cu6Sn5, isotypic with Dy3Co6Sn5, orthorhombic, Immm, oI28, a=4.365(1) Å, b=9.834(3) Å, c=12.827(3) Å, Z=2, R=0.019, 490 independent reflections, 28 parameters; Yb5Cu11Sn8 with its own structure, orthorhombic, Pmmn, oP48, a=4.4267(6) Å, b=22.657(8) Å, c=9.321(4) Å, Z=2, R=0.047, 1553 independent reflections, 78 parameters. Both compounds belong to the BaAl4-derived defective structures, and are closely related to Ce3Pd6Sb5 (oP28, Pmmn). The crystal structure of Yb3Cu8Sn4, isotypic with Nd3Co8Sn4, was refined from powder data by the Rietveld method: hexagonal, P63mc, hP30, a=9.080(1) Å, c=7.685(1) Å, Z=2, Rwp=0.040. It is an ordered substitution derivative of the BaLi4 type (hP30, P63/mmc). All compounds show strong Cu-Sn bonds with a length reaching 2.553(3) Å in Yb5Cu11Sn8.  相似文献   

19.
A new compound, Li4CaB2O6, has been synthesized by solid-state reaction and its structure has been determined from powder X-ray diffraction data by direct methods. The refinement was carried out using the Rietveld methods and the final refinement converged with Rp=10.4%, Rwp=14.2%, Rexp=4.97%. This compound belongs to the orthorhombic space group Pnnm, with lattice parameters a=9.24036(9) Å, b=8.09482(7) Å, and c=3.48162(4) Å. Fundamental building units are isolated [BO3]3− anionic groups, which are all parallel to the a-b plane stacked along the c-axis. The Ca atoms are six-coordinated by the O atoms to form octahedral coordination polyhedra, which are joined together through edges along the c-axis, forming infinitely long three-dimensional chains. The Li atoms have a four-fold and a five-fold coordination with O atoms that lead to complex Li-O-Li chains that also extend along the c-axis. The infrared spectrum of Li4CaB2O6 was also studied, which is consistent with the crystallographic study.  相似文献   

20.
A new rare earth nickel stannide, Sm2NiSn4, has been prepared by reacting the pure elements at high temperature in welded tantalum tubes. Its crystal structure was established by single crystal X-ray diffraction studies. Sm2NiSn4 crystallizes in the orthorhombic space group Pnma (No. 62) with cell parameters of a=16.878(2) Å, b=4.4490(7) Å, c=8.915(1) Å, and Z=4. Its structure can be viewed as the intermediate type between ZrSi2 and CeNiSi2. Sm2NiSn4 features two-dimensional (2D) corrugated [NiSn4]6− layers in which the 1D Sn zigzag chains and the 2D Sn square sheets are bridged by Ni atoms. The Sm3+ cations are located at the interlayer space. Results of both resistivity measurements and extended-Hückel tight-binding band structure calculations indicate that Sm2NiSn4 is metallic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号