首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis and photophysics of two novel 2‐(2′‐hydroxyphenyl)benzothiazole (HBT) derivatives are presented. The electron‐withdrawing trifluoromethyl (CF3) group in compound 1 facilitates the deprotonation of the phenolic hydroxy group. Well‐resolved triple fluorescence from the enol, keto, and phenolic anion, which ranges from 350 to 600 nm, was detected for 1 in ethanol, which marks the first time triple fluorescence from an excited‐state intramolecular proton transfer (ESIPT) molecule has been reported. Both triphenylamine and CF3 were introduced into derivative 2 . Intramolecular charge transfer and the “red‐edge effect” resulted in the bathochromic shift of dual fluorescence of 2 . Triple fluorescence was also observed for 2 in ethanol. In mixed acetonitrile and ethanol, pure white‐light emission with CIE coordinates of (0.33, 0.33) and a quantum yield of 0.25 was achieved for 2 . This work provides a new avenue for the rational design of an ESIPT molecule to achieve white‐light generation under mild conditions.  相似文献   

2.
A novel sextuple hydrogen‐bonding (HB) self‐assembly molecular duplex bearing red‐emitting perylene diimide (PDI) fluorophores, namely PDIHB , was synthesized, and its molecular structure was confirmed by 1H NMR, 13C NMR, TOF‐MS and 2D NMR. Compared with the small molecular reference compound PDI , PDIHB shows one time enhanced fluorescence efficiency in solid state (4.1% vs. 2.1%). More importantly, the presence of bulky HB oligoamide strands in PDIHB could trigger effective spatial separation between guest and host fluorophores in thin solid film state, hence inefficient energy transfer occurs between the blue‐emitting host 2TPhNIHB and red guest PDIHB in the 2 wt% guest/host blending film. As a result, a solution‐processed organic light‐emitting diode (OLED) with quite simple device structure of ITO/PEDOT:PSS (40 nm)/PVK (40 nm)/ PDIHB (2 wt%): 2TPhNIHB (50 nm)/LiF (0.8 nm)/Al (100 nm) could emit bias‐independent warm‐white electroluminescence with stable Commission Internationale de L'Eclairage coordinates of (0.42, 0.33), and the maximum brightness and current efficiency of this device are 260 cd·m?2 and 0.49 cd·A?1, respectively. All these results indicated that HB self‐assembly supramolecular fluorophores could act as prospective materials for white OLED application.  相似文献   

3.
We report the luminescent color tuning of a new complex, 2‐benzothiophenyl(4‐methoxyphenyl isocyanide)gold(I) ( 1 ), by using a new “polymorph doping” approach. The slow crystallization of the complex 1 afforded three different pure polymorphic crystals with blue, green, and orange emission under UV‐light irradiation. The crystal structures of pure polymorphs of 1 were investigated in detail by means of single‐crystal X‐ray analyses. Theoretical calculations based on the single‐crystal structures provided qualitative explanation of the difference in the excited energy‐levels of the three polymorphs of 1 . In sharp contrast, the rapid precipitation of 1 , with the optimized conditions reproducibly afforded homogeneous powder materials showing solid‐state white‐emission with Commission Internationale de l’Éclairage (CIE) 1931 chromaticity coordinates of (0.33, 0.35), which is similar to pure white. New “polymorphic doping” has been revealed to be critical to this white emission through spectroscopic and X‐ray diffraction analyses. The coexistence of the multiple polymorphs of 1 within the homogeneous powder materials and the ideal mixing of multiple luminescent colors gave its white emission accompanied with energy transfer from the predominant green‐emitting polymorph to the minor orange‐emitting polymorph.  相似文献   

4.
Several strategies have been adopted to design an artificial light‐harvesting system in which light energy is captured by peripheral chromophores and it is subsequently transferred to the core via energy transfer. A composite of carbon dots and dye‐encapsulated BSA‐protein‐capped gold nanoclusters (AuNCs) has been developed for efficient light harvesting and white light generation. Carbon dots (C‐dots) act as donor and AuNCs capped with BSA protein act as acceptor. Analysis reveals that energy transfer increases from 63 % to 83 % in presence of coumarin dye (C153), which enhances the cascade energy transfer from carbon dots to AuNCs. Bright white light emission with a quantum yield of 19 % under the 375 nm excitation wavelength is achieved by changing the ratio of components. Interesting findings reveal that the efficient energy transfer in carbon‐dot–metal‐cluster nanocomposites may open up new possibilities in designing artificial light harvesting systems for future applications.  相似文献   

5.
A novel white‐light‐emitting organic molecule, which consists of carbazolyl‐ and phenothiazinyl‐substituted benzophenone (OPC) and exhibits aggregation‐induced emission‐delayed fluorescence (AIE‐DF) and mechanofluorochromic properties was synthesized. The CIE color coordinates of OPC were directly measured with a non‐doped powder, which presented white‐emission coordinates (0.33, 0.33) at 244 K to 252 K and (0.35, 0.35) at 298 K. The asymmetric donor–acceptor–donor′ (D‐A‐D′) type of OPC exhibits an accurate inherited relationship from dicarbazolyl‐substituted benzophenone (O2C, D‐A‐D) and diphenothiazinyl‐substituted benzophenone (O2P, D′‐A‐D′). By purposefully selecting the two parent molecules, that is, O2C (blue) and O2P (yellow), the white‐light emission of OPC can be achieved in a single molecule. This finding provides a feasible molecular strategy to design new AIE‐DF white‐light‐emitting organic molecules.  相似文献   

6.
White‐light‐emitting materials with high mobility are necessary for organic white‐light‐emitting transistors, which can be used for self‐driven OLED displays or OLED lighting. In this study, we combined two materials with similar structures—2‐fluorenyl‐2‐anthracene (FlAnt) with blue emission and 2‐anthryl‐2‐anthracence (2A) with greenish‐yellow emission—to fabricate OLED devices, which showed unusual solid‐state white‐light emission with the CIE coordinates (0.33, 0.34) at 10 V. The similar crystal structures ensured that the OTFTs based on mixed FlAnt and 2A showed high mobility of 1.56 cm2 V−1 s−1. This simple method provides new insight into the design of high‐performance white‐emitting transistor materials and structures.  相似文献   

7.
A series of new star‐shaped polymers with a triphenylamine‐based iridium(III) dendritic complex as the orange‐emitting core and poly(9,9‐dihexylfluorene) (PFH) chains as the blue‐emitting arms is developed towards white polymer light‐emitting diodes (WPLEDs). By fine‐tuning the content of the orange phosphor, partial energy transfer and charge trapping from the blue backbone to the orange core is realized to achieve white light emission. Single‐layer WPLEDs with the configuration of ITO (indium‐tin oxide)/poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/polymer/CsF/Al exhibit a maximum current efficiency of 1.69 cd A−1 and CIE coordinates of (0.35, 0.33), which is very close to the pure white‐light point of (0.33, 0.33). To the best of our knowledge, this is the first report on star‐shaped white‐emitting single polymers that simultaneously consist of fluorescent and phosphorescent species.

  相似文献   


8.
Organic nanoparticles consisting of 3,3′‐diethylthiacyanine (TC) and ethidium (ETD) dyes are synthesized by ion‐association between the cationic dye mixture (10 % ETD doping) and the tetrakis(4‐fluorophenyl)borate (TFPB) anion, in the presence of a neutral stabilizing polymer, in aqueous solution. Doping with ETD makes the particle size smaller than without doping. Size tuning can also be conducted by varying the molar ratio (ρ) of the loaded anion to the cationic dyes. The fluorescence spectrum of TC shows good overlap with the absorption of ETD in the 450–600 nm wavelength region, so efficient excitation‐energy transfer from TC (donor) to ETD (acceptor) is observed, yielding organic nanoparticles whose fluorescence colours are tunable. Upon ETD doping, the emission colour changes significantly from greenish‐blue to reddish or whitish. This change is mainly dependent on ρ. For the doped nanoparticle sample with ρ=1, the intensity of fluorescence ascribed to ETD is ~150‐fold higher than that from pure ETD nanoparticles (efficient antenna effect). Non‐radiative Förster resonance‐energy transfer (FRET) is the dominant mechanism for the ETD fluorescence enhancement. The organic nanoparticles of a binary dye system fabricated by the ion‐association method act as efficient light‐harvesting antennae, which are capable of transferring light energy to the dopant acceptors in very close proximity to the donors, and can have multi‐wavelength emission colours with high fluorescence quantum yields.  相似文献   

9.
A new strategy to realize efficient white‐light emission from a binary fluorene‐based copolymer (PF‐Phq) with the fluorene segment as a blue emitter and the iridium complex, 9‐iridium(III)bis(2‐(2‐phenyl‐quinoline‐N,C3′)(11,13‐tetradecanedionate))‐3,6‐carbazole (Phq), as a red emitter has been proposed and demonstrated. The photo‐ and electroluminescence properties of the PF‐Phq copolymers were investigated. White‐light emission with two bands of blue and red was achieved from the binary copolymers. The efficiency increased with increasing concentration of iridium complex, which resulted from its efficient phosphorescence emission and the weak phosphorescent quenching due to its lower triplet energy level than that of polyfluorene. In comparison with the binary copolymer, the efficiency and color purity of the ternary copolymers (PF‐Phq‐BT) were improved by introducing fluorescent green benzothiadiazole (BT) unit into polyfluorene backbone. This was ascribed to the exciton confinement of the benzothiadiazole unit, which allowed efficient singlet energy transfer from fluorene segment to BT unit and avoided the triplet quenching resulted from the higher triplet energy levels of phosphorescent green emitters than that of polyfluorene. The phosphorescence quenching is a key factor in the design of white light‐emitting polyfluorene with triplet emitter. It is shown that using singlet green and triplet red emitters is an efficient approach to reduce and even avoid the phosphorescence quenching in the fluorene‐based copolymers. The strategy to incorporate singlet green emitter to polyfluorene backbone and to attach triplet red species to the side chain is promising for white polymer light‐emitting diodes. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 453–463, 2008  相似文献   

10.
An artificial light‐harvesting system with sequential energy‐transfer process was fabricated based on a supramolecular strategy. Self‐assembled from the host–guest complex formed by water‐soluble pillar[5]arene (WP5), a bola‐type tetraphenylethylene‐functionalized dialkyl ammonium derivative (TPEDA), and two fluorescent dyes, Eosin Y (ESY) and Nile Red (NiR), the supramolecular vesicles achieve efficient energy transfer from the AIE guest TPEDA to ESY. ESY can function as a relay to further transfer the energy to the second acceptor NiR and realize a two‐step sequential energy‐transfer process with good efficiency. By tuning the donor/acceptor ratio, bright white light emission can be successfully achieved with a CIE coordinate of (0.33, 0.33). To better mimic natural photosynthesis and make full use of the harvested energy, the WP5?TPEDA‐ESY‐NiR system can be utilized as a nanoreactor: photocatalyzed dehalogenation of α‐bromoacetophenone was realized with 96 % yield in aqueous medium.  相似文献   

11.
New white polymeric light‐emitting diodes from phosphorescent single polymer systems have been developed using a blue‐light‐emitting fluorene monomer copolymerized with a red‐light‐emitting phosphorescent dye, and end‐capped with a green‐light‐emission dye. All of the copolymers have good thermal stability with 5% weight loss temperatures at 380–413 °C and glass transition temperatures at 75–137 °C. We obtained white‐light‐emission devices by adjusting the molar ratio of the comonomers with a structure of indium tin oxide/poly(3,4‐ethylenedioxythiophene): poly(styrene sulfonic acid)/polyvinylcarbazole (PVK)/emission layer/Ca/Ag. The highest brightness in such a device configuration is 300 cd/m2 at a current density of 2900 A/m2 with high white color quality (Commission Internationale de l'Eclairage (CIE) coordinates of (0.33, 0.34)). © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 464–472, 2008  相似文献   

12.
A series of fluorene‐based copolymers composed of blue‐ and orange‐light‐emitting comonomers were synthesized through palladium‐catalyzed Suzuki coupling reactions. 9,9‐Dihexylfluorene and 2‐(2,6‐bis‐{2‐[1‐(9,9‐dihexyl‐9H‐fluoren‐2‐yl)‐1,2,3,4‐tetrahydroquinolin‐6‐yl]‐vinyl}‐pyran‐4‐ylidene)‐malononitrile (DCMF) were used as the blue‐ and orange‐light‐emitting chromophores, respectively. The resulting single polymers exhibited simultaneous blue (423/450 nm) and orange (580–600 nm) emissions from these two chromophores. By adjusting the fluorene and DCMF contents, white light emission could be obtained from a single polymer; a device with an ITO/PEDOT:PSS/polymer/Ca/Al configuration was found to exhibit pure white electroluminescence with Commission Internationale de L'Eclairage (CIE) coordinates of (0.33, 0.31), a maximum brightness of 1180 cd/m2, and a current efficiency of 0.60 cd/A. Furthermore, the white light emission of this device was found to be very stable with respect to variation of the driving voltage. The CIE coordinates of the device were (0.32, 0.29), (0.32, 0.29), and (0.33, 0.31) for driving voltages of 7, 8, and 10 V, respectively. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3380–3390, 2007  相似文献   

13.
In recent years, fluorescent carbon dots (CDs) have been developed and showed potential applications in biomedical imaging and light‐emitting diodes (LEDs) for their excellent fluorescent properties. However, it still remains a challenge to incorporate fluorescent CDs into the host matrix in situ to overcome their serious self‐quenching. Herein, a one‐pot hydrothermal method is used to prepare nano‐zirconia with CDs (CDs@ZrO2) nanoparticles. During the reaction, CDs and nano‐zirconia are generated simultaneously and connected with silane coupling agent. The CDs@ZrO2 nanoparticles exhibit tunable emission wavelength from 450 to 535 nm emission by regulating the content of citric acid in the feed. The quantum yield of the CDs@ZrO2 is up to 23.8%. Furthermore, the CDs@ZrO2 nanoparticles with regulable fluorescence emission can be used for the fluorescent material to prepare white LEDs. The prepared LED has significant white light emission with color coordinates of (0.30, 0.37) and its color rendering index (CRI) is 67.1. In summary, we have developed the solid‐state CDs@ZrO2 nanoparticles with tunable emission by a valuable strategy, that is, one‐pot method, for white LEDs.  相似文献   

14.
Two‐photon photodynamic therapy (2P‐PDT) is a promising noninvasive treatment of cancers and other diseases with three‐dimensional selectivity and deep penetration. However, clinical applications of 2P‐PDT are limited by small two‐photon absorption (TPA) cross sections of traditional photosensitizers. The development of folate receptor targeted nano‐photosensitizers based on conjugated polymers is described. In these nano‐photosensitizers, poly{9,9‐bis[6′′‐(bromohexyl)fluorene‐2,7‐ylenevinylene]‐coalt‐1,4‐(2,5‐dicyanophenylene)}, which is a conjugated polymer with a large TPA cross section, acts as a two‐photon light‐harvesting material to significantly enhance the two‐photon properties of the doped photosensitizer tetraphenylporphyrin (TPP) through energy transfer. These nanoparticles displayed up to 1020‐fold enhancement in two‐photon excitation emission and about 870‐fold enhancement in the two‐photon‐induced singlet oxygen generation capability of TPP. Surface‐functionalized folic acid groups make these nanoparticles highly selective in targeting and killing KB cancer cells over NIH/3T3 normal cells. The 2P‐PDT activity of these nanoparticles was significantly improved, potentially up to about 1000 times, as implied by the enhancement factors of two‐photon excitation emission and singlet oxygen generation. These nanoparticles could act as novel two‐photon nano‐photosensitizers with combined advantages of low dark cytotoxicity, targeted 2P‐PDT with high selectivity, and simultaneous two‐photon fluorescence imaging capability; these are all required for ideal two‐photon photosensitizers.  相似文献   

15.
Summary: The first examples of the dye‐coated semi‐conducting polymer nanoparticles as well as experiments to demonstrate the excitation energy transfer from the excited chromophor of the nanoparticle to the fluorescent dye are described. We have demonstrated that the blue fluorescence of the dye‐coated polyfluorene nanoparticles is only slightly quenched after dye deposition. However, a new emission band of the surface‐bound dye (Rhodamine 6G or Rhodamine TM) appears in the wavelength region of 530–600 nm. These results clearly indicate an effective excitation energy transfer from the excited PF chromophores to the fluorescent dye.

Emission spectra of PF2/6 nanoparticle dispersion and of Rhodamine 6G‐coated nanoparticle dispersion.  相似文献   


16.
In this study, luminescence electrospun (ES) nanofibers based on ternary blends of poly(9,9‐dioctylfluoreny‐2,7‐diyl) (PFO)/poly[2‐methoxy‐5‐(2‐ethylhexyloxy)‐1,4‐phenylenevinylene] (MEH‐PPV)/poly(methyl methacrylate) (PMMA) were prepared from chloroform solutions using a single capillary spinneret. Effects of PFO/MEH‐PPV ratio on the morphology and photophysical properties were studied while the PMMA weight percentage was fixed at 90 wt %. The morphologies of the prepared ES fibers were characterized by FE‐SEM and fluorescence microscopy. The obtained fibers had diameters around a few hundred nm and pore sizes in the range of 30–35 nm. The emission colors of the PFO/MEH‐PPV/PMMA blend ES fibers changed from blue, white, yellowish‐green, greenish‐yellow, orange, to yellow, as the MEH‐PPV composition increased. In contrast, the emission colors of the corresponding spin‐coated films were blue, orange, pink‐red, red, and deep‐red. Based on the values of solubility parameters, the PFO and MEH‐PPV are miscible to each other and trapped in the PMMA matrix. Hence, energy transfer between these two polymers is possible. The smaller aggregated domains in the ES fiber compared to those of spin‐coated films possibly reduce the efficiency of energy transfer, leading to different emission colors. Also, the prepared ES fibers had higher photoluminescence efficiencies than those of the spin‐coated films. Pure white light‐emitting fibers prepared from the PFO/MEH‐PPV/PMMA blend ratio of 9.5/0.5/90 had the Commission Internationale de L'Eclairage (CIE) coordinate of (0.33, 0.31). Our results showed that different color light‐emitting ES fibers were produced through optimizing the composition of semiconducting polymer in the transparent polymer matrix. This type of ES fibers could have potential applications as new light sources or sensory materials for smart textiles. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 463–470, 2009  相似文献   

17.
A series of white polymer light emitting displays (PLEDs) based on a polymer blend of polyalkylfluorenes and poly(2‐methoxy‐5,2′‐ethyl‐hexyloxy‐1,4‐phenylene vinylene) (MEH‐PPV) was developed. MEH‐PPV or red light emitting alkyfluorene copolymer (PFR) was blended with blue light emitting alkyfluorene copolymer (PFB), and MEH‐PPV was blended with both green light emitting alkyfluorene copolymer (PFG) and PFB to generate white light emission PLEDs. Low turn on voltage (2.7 V), high brightness (12,149 nits), high efficiency (4.0 cd/A, 4.0 lm/W), and good color purity (Commission Internationale de L'Eclairage (CIEx,y) co‐ordinates (0.32, 0.34)) were obtained for the white PLEDs based on the PFB and MEH‐PPV polymer blend. Exciplex formation in the interface between PFR and PFB induced a new green emission peak for these two components based white PLEDs. As a result, strong white emission (4078 nits) was obtained by mixing the red, green, and blue (RGB) three primary colors. High color purity of blue (CIE, x = 0.14, y = 0.08), green (CIE, x = 0.32, y = 0.64) and red (CIE, x = 0.67, y = 0.33) emissions was achieved for white PLEDs combining with dielectric interference color‐filters. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 330–341, 2007  相似文献   

18.
As an important energy‐saving technique, white‐light‐emitting diodes (W‐LEDs) have been seeking for low‐cost and environment‐friendly substitutes for rare‐earth‐based expensive phosphors or Pd2+/Cd2+‐based toxic quantum dots (QDs). In this work, precursors and chemical processes were elaborately designed to synthesize intercrossed carbon nanorings (IC‐CNRs) with relatively pure hydroxy surface states for the first time, which enable them to overcome the aggregation‐induced quenching (AIQ) effect, and to emit stable yellow‐orange luminescence in both colloidal and solid states. As a direct benefit of such scarce solid luminescence from carbon nanomaterials, W‐LEDs with color coordinate at (0.28, 0.27), which is close to pure white light (0.33, 0.33), were achieved through using these low‐temperature‐synthesized and toxic ion‐free IC‐CNRs as solid phosphors on blue LED chips. This work demonstrates that the design of surface states plays a crucial role in exploring new functions of fluorescent carbon nanomaterials.  相似文献   

19.
We have developed efficient white‐light‐emitting polymers through the incorporation of low‐bandgap orange‐light‐emitting benzoselenadiazole ( BSeD ) moieties into the backbone of a blue‐light‐emitting bipolar polyfluorene (PF) copolymer, which contains hole‐transporting triphenylamine and electron‐transporting oxadiazole pendent groups. By carefully controlling the concentrations of the low‐energy‐emitting species in the resulting copolymers, partial energy transfer from the blue‐fluorescent PF backbone to the orange‐fluorescent segments led to a single polymer emitting white light and exhibiting two balanced blue and orange emissions simultaneously. Efficient polymer light‐emitting devices prepared using this copolymer exhibited luminance efficiencies as high as 4.1 cd/A with color coordinates (0.30, 0.36) located in the white‐light region. Moreover, the color coordinates remained almost unchanged over a range of operating potentials. A mechanistic study revealed that energy transfer from the PF backbone to the low‐bandgap segments, rather than charge trapping, was the main operating process involved in the electroluminescence process. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2938–2946, 2007  相似文献   

20.
Organic light‐emitting diodes (OLEDs) have been greatly developed in recent years owing to their abundant advantages for full‐color displays and general‐purpose lightings. Blue emitters not only provide one of the primary colors of the RGB (red, green and blue) display system to reduce the power consumption of OLEDs, but are able able to generate light of all colors, including blue, green, red, and white by energy transfer processes in devices. However, it remains a challenge to achieve high‐performance blue electroluminescence, especially for nondoped devices. In this paper, we report a blue light emitting molecule, DPAC‐AnPCN, which consists of 9,9‐diphenyl‐9,10‐dihydroacridine and p‐benzonitrile substituted anthracene moieties. The asymmetrically decoration on anthracene with different groups on its 9 and 10 positions combines the merits of the respective constructing units and endows DPAC‐AnPCN with pure blue emission, high solid‐state efficiency, good thermal stability and appropriate HOMO and LUMO energy levels. Furthermore, DPAC‐AnPCN can be applied in a nondoped device to effectively reduce the fabrication complexity and cost. The nondoped device exhibits pure blue electroluminescence (EL) locating at 464 nm with CIE coordinates of (0.15, 0.15). Moreover, it maintains high efficiency at relatively high luminescence. The maximum external quantum efficiency (EQE) reaches 6.04 % and still remains 5.31 % at the luminance of 1000 cd m?2 showing a very small efficiency roll‐off.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号