首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary: The use of the block copolymers polystyrene‐block‐poly(ethylene oxide) and poly(methyl methacrylate)‐block‐poly(ethylene oxide) is described to assist the direct solubilization of single‐walled carbon nanotubes (SWNTs) into water under ultrasonic irradiation. As compared to surfactants and homopolymers, the block copolymer systems may offer the potential of additional unique morphologies through self‐assembly. TEM and AFM analyses of solution‐cast samples indicate exfoliation and wetting of the SWNTs by the block copolymer. With increasing duration of ultrasonic irradiation, an increase in solution viscosity is initially found, which suggests that it is a convenient indicator of the progress of exfoliation of the SWNTs. With continued intense ultrasonic irradiation, the solution viscosity may decrease apparently because of damage/breakage of the SWNTs.

Schematic of the interaction of the PMMA‐b‐PEO block copolymer with the single‐walled carbon nanotubes and the specific viscosity of the system in aqueous solution as a function of sonication time: results from using an ultrasound bath (‐‐‐‐▪‐‐‐‐) or an ultrasound horn (—▴—).  相似文献   


2.
A well‐defined amphiphilic copolymer brush with poly(ethylene oxide) as the main chain and polystyrene as the side chain was successfully prepared by a combination of anionic polymerization and atom transfer radical polymerization (ATRP). The glycidol was first protected by ethyl vinyl ether to form 2,3‐epoxypropyl‐1‐ethoxyethyl ether and then copolymerized with ethylene oxide by the initiation of a mixture of diphenylmethylpotassium and triethylene glycol to give the well‐defined polymer poly(ethylene oxide‐co‐2,3‐epoxypropyl‐1‐ethoxyethyl ether); the latter was hydrolyzed under acidic conditions, and then the recovered copolymer of ethylene oxide and glycidol {poly(ethylene oxide‐co‐glycidol) [poly(EO‐co‐Gly)]} with multiple pending hydroxymethyl groups was esterified with 2‐bromoisobutyryl bromide to produce the macro‐ATRP initiator [poly(EO‐co‐Gly)(ATRP). The latter was used to initiate the polymerization of styrene to form the amphiphilic copolymer brushes. The object products and intermediates were characterized with 1H NMR, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, Fourier transform infrared, and size exclusion chromatography in detail. In all cases, the molecular weight distribution of the copolymer brushes was rather narrow (weight‐average molecular weight/number‐average molecular weight < 1.2), and the linear dependence of ln[M0]/[M] (where [M0] is the initial monomer concentration and [M] is the monomer concentration at a certain time) on time demonstrated that the styrene polymerization was well controlled. This method has universal significance for the preparation of copolymer brushes with hydrophilic poly(ethylene oxide) as the main chain. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4361–4371, 2006  相似文献   

3.
The block copolymer poly(ethylene oxide)‐b‐poly(4‐vinylpyridine) was synthesized by a combination of living anionic ring‐opening polymerization and a controllable radical mechanism. The poly(ethylene oxide) prepolymer with the 2,2,6,6‐tetramethylpiperidinyl‐1‐oxy end group (PEOT) was first obtained by anionic ring‐opening polymerization of ethylene oxide with sodium 4‐oxy‐2,2,6,6‐tetramethylpiperidinyl‐1‐oxy as the initiator in a homogeneous process. In the polymerization UV and electron spin resonance spectroscopy determined the 2,2,6,6‐tetramethylpiperidinyl‐1‐oxy moiety was left intact. The copolymers were then obtained by radical polymerization of 4‐vinylpyridine in the presence of PEOT. The polymerization showed a controllable radical mechanism. The desired block copolymers were characterized by gel permeation chromatography, Fourier transform infrared, and NMR spectroscopy in detail. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4404–4409, 2002  相似文献   

4.
Stimuli‐responsive poly[(N‐isopropylacrylamide‐co‐maleic anhydride)‐g‐poly(ethylene oxide)]/poly(ethylene imine) macrobranched macrocomplexes were synthesized by (1) the radical copolymerization of N‐isopropylacrylamide and maleic anhydride with α,α′‐azobisisobutyronitrile as an initiator in 1,4‐dioxane at 65 °C under a nitrogen atmosphere, (2) the polyesterification (grafting) of prepared poly(N‐isopropylacrylamide‐co‐maleic anhydride) containing less than 20 mol % anhydride units with α‐hydroxy‐ω‐methoxy‐poly(ethylene oxide)s having different number‐average molecular weights (Mn = 4000, 10,000, or 20,000), and (3) the incorporation of macrobranched copolymers with poly(ethylene imine) (Mn = 60,000). The composition and structure of the synthesized copolymer systems were determined by Fourier transform infrared, 1H and 13C NMR spectroscopy, and chemical and elemental analyses. The important properties of the copolymer systems (e.g., the viscosity, thermal and pH sensitivities, and lower critical solution temperature behavior) changed with increases in the molecular weight, composition, and length of the macrobranched hydrophobic domains. These copolymers with reactive anhydride and carboxylic groups were used for the stabilization of penicillin G acylase (PGA). The conjugation of the enzyme with the copolymers significantly increased the thermal stability of PGA (three times at 45 °C and two times at 65 °C). © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1580–1593, 2003  相似文献   

5.
A novel amphiphilic branch‐ring‐branch tadpole‐shaped [linear‐poly(ε‐caprolactone)]‐b‐[cyclic‐poly(ethylene oxide)]‐b‐[linear‐poly(ε‐caprolactone)] [(l‐PCL)‐b‐(c‐PEO)‐b‐(l‐PCL)] was synthesized by combination of glaser coupling reaction with ring‐opening polymerization (ROP) mechanism. The self‐assembling behaviors of (l‐PCL)‐b‐(c‐PEO)‐b‐(l‐PCL) and their π‐shaped analogs of poly(ε‐caprolactone)/poly(ethylene oxide)]‐b‐poly(ethylene oxide)‐b‐[poly(ε‐caprolactone)/poly(ethylene oxide) with comparable molecular weight in water were preliminarily investigated. The results showed that the micelles formed from the former took a fiber look, however, that formed from the latter took a spherical look. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
The incorporation of 5‐vinyl‐2‐norbornene (VNB) into ethylene‐norbornene copolymer was investigated with catalysts [Ph2C(Fluo)(Cp)]ZrCl2 ( 1 ), rac‐[Et(Ind)2]ZrCl2 ( 2 ), and [Me2Si(Me4Cp)tBuN]TiCl2 ( 3 ) in the presence of MAO by terpolymerizing different amounts of 5‐vinyl‐2‐norbornene with constant amounts of ethylene and norbornene at 60°C. The highest cycloolefin incorporations and highest activity in terpolymerizations were achieved with 1 . The distribution of the monomers in the terpolymer chain was determined by NMR spectroscopy. As confirmed by XRD and DSC analysis, catalysts 1 and 3 produced amorphous terpolymer, whereas 2 yielded terpolymer with crystalline fragments of long ethylene sequences. When compared with poly‐(ethylene‐co‐norbornene), VNB increased both the glass transition temperatures and molar masses of terpolymers produced with the constrained geometry catalyst whereas decreased those for the metallocenes.  相似文献   

7.
Poly(sodium(2‐sulfamate‐3‐carboxylate)isoprene)‐b‐poly(ethylene oxide) and poly(ethylene oxide)‐b‐poly(sodium(2‐sulfamate‐1‐carboxylate)isoprene)‐b‐poly(ethylene oxide) double hydrophilic block copolymers were prepared by selective post polymerization reaction of the polyisoprene block, of poly(isoprene‐b‐ethylene oxide) diblocks or poly(ethylene oxide‐b‐isoprene‐b‐ethylene oxide) triblock precursors, with N‐chlorosulfonyl isocyanate. The precursors were synthesized by anionic polymerization high vacuum techniques and had narrow molecular weight distributions and predictable molecular weights and compositions. The resulting double hydrophilic block copolymers were characterized by FTIR and potentiometric titrations in terms of the incorporated functional groups. Their properties in aqueous solutions were studied by viscometry and dynamic light scattering. The latter techniques revealed a complex dilute solution behavior of the novel block copolymers, resulting from the polyelectrolyte character of the functionalized PI block and showing a dependence on solution ionic strength and pH. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 606–613, 2006  相似文献   

8.
The synthesis of three series of double hydrophilic block copolymers (DHBCs), consisting of poly(ethylene oxide) as the neutral water soluble block and a second polyelectrolyte block of variable chemistry, is described. The synthetic scheme involves the anionic polymerization of poly(ptert‐butoxystyrene‐b‐ethylene oxide) (PtBOS‐PEO) amphiphilic block copolymer precursors followed by the acidic hydrolysis of the hydrophobic poly(ptert‐butoxystyrene) (PtBOS) block to an annealed anionic polyelectrolyte poly(p‐hydroxystyrene) (PHOS) block. The PHOS block was subsequently transformed into a high charge density annealed cationic polyelectrolyte namely poly[3,5‐bis(dimethylaminomethylene) hydroxystyrene] (NPHOS), via aminomethylation. Finally, the NPHOS block was transformed into a quenched polyelectrolyte, namely quaternized poly[3,5‐bis(dimethylaminomethylene) hydroxystyrene] (QNPHOS) block by reaction with CH3I. The solution properties of the different series of the above block polyelectrolyte copolymers have been investigated using static, dynamic and electrophoretic light scattering, turbidimetry, and fluorescence spectroscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5790–5799, 2007  相似文献   

9.
We studied the conducting and mesomorphic behavior of a dendritic‐linear copolymer on adding hydrophilic additives and lithium salts. For the preparation of the pristine block copolymer ( A ), a click reaction of a hydrophobic Y‐shaped dendron block and a hydrophilic linear poly(ethylene oxide) coil with Mn = 750 g mol?1 was performed. For ionic block copolymer samples ( 1–3 ), a hydrophilic compound ( B ) bearing two tri(ethylene oxide) chains was used as the additive. In all ionic samples, the lithium concentration per ethylene oxide was chosen to be 0.05. As characterized by polarized optical microscopy and small angle X‐ray scattering techniques, copolymer A showed a hexagonal columnar mesophase. On addition of lithium‐doped additives, ionic samples 1 and 2 with the additive weight fractions (fw) of 10 and 20%, columnar and bicontinuous structures coexisted in the liquid crystalline phase. On the other hand, ionic sample 3 with fw = 30% displayed only a bicontinuous cubic mesophase. Based on the impedance results, with increasing the amount of additives, the conductivity value increased from 3.80 × 10?6 to 2.34 × 10?5 S cm?1 at 35 °C. The conductivity growth could be explained by the interplay of the plasticization effect of the mobile additive and the morphological transformation from 1D to 3D of the ion‐conducting cylindrical cores. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
Synthesis and characterization of a novel carbazole‐based monomer, 9‐(bicyclo[2.2.1]hept‐5‐en‐2‐ylmethyl)‐9H‐carbazole (BHMCZ) and its copolymerization with ethylene by using two metallocene/MAO catalyst systems are presented. The monomer was characterized by means of NMR spectroscopy, MS and elementary analysis. Copolymerization studies were conducted using [Ph2C(Ind)(Cp)ZrCl2] and [Ph2C(Flu)(Cp)ZrCl2] catalysts. The [Ph2C(Ind)(Cp)ZrCl2] catalyst gave a copolymer containing as much as 4.6 mol‐% of BHMCZ. Polymers were characterized using NMR spectroscopy, gel permeation chromatography (GPC) and differential scanning calorimetry (DSC).  相似文献   

11.
Dihydrophilic block copolymers of poly(ethylene oxide)‐b‐polyglycidol were prepared and polyglycidol blocks converted into ionic blocks containing  OP(O)(OH)2,  COOH, or  SO3H groups. Although phosphorylation of polyhydroxy compounds with POCl3 usually leads to insoluble products, phosphorylation of poly(ethylene oxide)‐b‐polyglycidol using a POCl3/ OH ratio equal to 1/1 gave soluble products, predominantly monoester of phosphoric acid (after hydrolysis) (provided that the reaction was conducted in triethyl phosphate as solvent). All copolymers were characterized by 1H NMR, 13C NMR, and/or 31P NMR spectra for confirming their structure. The degree of substitution was determined from quantitative 13C NMR spectroscopy (inverted‐gate decoupling‐acquisition mode). Preliminary results indicate that from these three groups of block copolymers the phosphoric acid esters are the most effective ones at least in controlling the growth of CaCO3 crystals in aqueous solution. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 955–963, 2001  相似文献   

12.
[3‐Cyano‐2‐(2,6‐diisopropylphenyl)aminopent‐2‐en‐4‐(phenylimine)tris (pentafluorophenyl)borate](η5‐C5H5)ZrCl2, [(B(C6F5)3‐ NC‐nacnac)CpZrCl2], precatalyst ( 2 ) can be treated with low concentrations of methylaluminoxane (MAO) to generate active sites capable of copolymerizing ethylene with 1‐octadecene or norbornene under mild conditions. A series of poly(ethylene‐co‐octadecene) and poly(ethylene‐co‐norbornene) copolymers were prepared, and their properties were characterized by NMR, differential scanning calorimetry, and mechanical analysis. The results show that this system produced poly(ethylene‐co‐octadecene) copolymers with a branching content of about 8 mol %. However, upon increasing the comonomer concentration, a drastic reduction in the Mn of the product is observed concomitant with an increase in comonomer incorporation. This leads to a gradual decrease in Young's modulus and stress at break, indicating an increase in the “softness” of the copolymer. In the case of copolymerizations of ethylene and norbornene, the catalytic system ( 2 /MAO) shows a substantial decrease in reactivity in the presence of norbornene and generates copolymer chains in which 5–10 mol % norbornene is in blocks. We also observe that ethylene norbornene copolymers exhibit a high degree of alternating insertions (close to 50%), as determined by NMR spectroscopy. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

13.
Amphiphilic H‐shaped [poly(ethylene oxide)]3‐polystyrene‐[poly(ethylene oxide)]3(PEO3‐PS‐PEO3) copolymer was synthesized by 2‐methyl‐2‐nitrosopropane (MNP) induced single electron transfer nitroxide radical coupling (SETNRC) using PEO3‐(PS‐Br) as a single precursor. First, the A3B star‐shaped precursor PEO3‐(PS‐Br) was synthesized by atom transfer radical polymerization (ATRP) using three‐arm star‐shaped PEO3‐Br as macro‐initiator. Then, in the presence of Cu(I)Br/Me6TREN, the bromide group at PS end was sequentially transferred into carbon‐centered radical by single electron transfer and then nitroxide radical by reacting with MNP in mixed solvents of dimethyl sulfoxide (DMSO)/tetrahydrofuran (THF), and in situ generated nitroxide radical could again capture another carbon‐centered radical by fast SETNRC to form target PEO3‐PS‐PEO3 copolymer. The MNP induced SETNRC could reach to a high efficiency of 90% within 60 min. After the product PEO3‐PS‐PEO3 was cleaved by ascorbic acid, the SEC results showed that there was about 30% fraction of product formed by single electron transfer radical coupling (SETRC) between carbon‐centered radicals. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
Using core‐first strategy, the amphiphilic A4B4 star‐shaped copolymers [poly(ethylene oxide)]4[poly(ε‐caprolactone)]4 [(PEO)4(PCL)4], [poly(ethylene oxide)]4[poly(styrene)]4 [(PEO)4(PS)4], and [poly(ethylene oxide)]4[poly(tert‐butyl acrylate)]4 [(PEO)4(PtBA)4] were synthesized by mechanisms transformation combining with thiol‐ene reaction. First, using a designed multifunctional mikto‐initiator with four active hydroxyl groups and four allyl groups, the four‐armed star‐shaped polymers (PEO‐Ph)4/(OH)4 with four active hydroxyl groups at core position were obtained by sequential ring‐opening polymerization (ROP) of ethylene oxide monomers, capping reaction of living oxyanion with benzyl chloride, and transformation of allyl groups into hydroxyl groups by thiol‐ene reaction. Then, the A4B4 star‐shaped copolymers (PEO)4(PS)4 or (PEO)4(PtBA)4 were obtained by atom transfer radical polymerization (ATRP) of styrene or tert‐butyl acrylate (tBA) monomers from macroinitiator of (PEO‐Ph)4/(Br)4, which was obtained by esterification of (PEO‐Ph)4/(OH)4 with 2‐bromoisobutyryl bromide. The A4B4 star‐shaped copolymers (PEO)4(PCL)4 were also obtained by ROP of ε‐caprolactopne monomers from macroinitiator of (PEO‐Ph)4/(OH)4. The target copolymers and intermediates were characterized by size‐exclusion chromatography, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectroscopy, and nuclear magnetic resonance in detail. This synthetic route might be a versatile one to various AnBn (n ≥ 3) star‐shaped copolymers with defined structure and compositions. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4572–4583  相似文献   

15.
A new stratagem for the synthesis of amphiphilic graft copolymers of hydrophilic poly(ethylene oxide) as the main chain and hydrophobic polystyrene as the side chains is suggested. A poly(ethylene oxide) with pending 2,2,6,6‐tetramethylpiperidine‐1‐oxyls [poly(4‐glycidyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl‐co‐ethylene oxide)] was first prepared by the anionic ring‐opening copolymerization of ethylene oxide and 4‐glycidyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl, and then the graft copolymerization of styrene was completed with benzoyl peroxide as the initiator in the presence of poly(4‐glycidyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl‐co‐ethylene oxide). The polymerization of styrene was under control, and comblike, amphiphilic poly(ethylene oxide)‐g‐polystyrene was obtained. The copolymer and its intermediates were characterized with size exclusion chromatography, 1H NMR, and electron spin resonance in detail. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3836–3842, 2006  相似文献   

16.
Summary: Dendronized poly(methacrylate)‐poly(ethylene oxide) (PDMA58b‐PEO45) formed as a stoichiometric inclusion complex with α‐cyclodextrin. The incorporation of the rodlike PDMA blocks produced no apparent change in the crystal structure, but its steric hindrance on the PEO chain resulted in lower yield as compared with the pure PEO. Moreover, the architectural transition from rod–coil to rod–rod led to a morphological change from spindly aggregates to rods in a binary solvent mixture of N,N‐dimethylformamide and water.

Synthesis and self‐assembly of the α‐cyclodextrin‐[dendronized poly(methacrylate)‐poly(ethylene oxide)] (α‐CD‐PDMA‐PEO) polypseudorotaxane (PR).  相似文献   


17.
Photocrosslinkable poly(vinylbenzophenone)‐containing polymers were synthesized via a one‐step, Friedel–Crafts benzoylation of polystyrene‐containing starting materials [including polystyrene, polystyrene‐block‐poly(tert‐butyl acrylate), polystyrene‐block‐poly(ethylene oxide), polystyrene‐block‐poly(methyl methacrylate), and polystyrene‐block‐poly(n‐butyl acrylate)] with benzoyl trifluoromethanesulfonate as a benzoylation reagent. The use of this mild reagent (which required no added Lewis acid) permitted polymers with well‐defined compositions and narrow molecular weight distributions to be synthesized. Micelles formed from one of these benzoylated polymers, [polystyrene0.25co‐poly(vinylbenzophenone)0.75]115block‐poly(acrylic acid)14, were then fixed by the irradiation of the micelle cores with UV light. As the irradiation time was increased, the pendent benzophenone groups crosslinked with other chains in the glassy micelle cores. Dynamic light scattering, spectrofluorimetry, and Fourier transform infrared spectroscopy were all used to verify the progress of the crosslinking reaction. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2604–2614, 2006  相似文献   

18.
The Na2CO3‐promoted polymerization of 1,3‐dioxolan‐2‐one (I) to afford poly(ethylene glycol) III was reinvestigated. The reaction appeared to involve a nucleophilic attack against the carbonyl and methylene groups of I to afford poly(carbonate) II with poly(ethylene glycol) linkages and ethylene oxide IV as a side product (10–22%). As the reaction progressed, poly(carbonate) II decreased and poly(ethylene glycol) III increased. Under some conditions, poly(ethylene glycol)s V and VI with vinyl ether terminal groups were formed unexpectedly. The formation of unsaturated products during the polymerization of I/EO (ethylene oxide) has not been reported in the literature. We believe that vinyl ethers were formed from the degradation of poly(carbonate)s and were accompanied by a reduction in molecular weight. The structures of vinyl ethers V and VI were confirmed by hydrogenation of the double bond into the ethyl ether group in VII and VIII, respectively. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 152–160, 2000  相似文献   

19.
A functional composite of single‐walled carbon nanotubes (SWNTs) with hematin, a water‐insoluble porphyrin, was first prepared in 1‐butyl‐3‐methylimidazolium hexafluorophosphate ([BMIM][PF6]) ionic liquid. The novel composite in ionic liquid was characterized by scanning electron microscopy, ultraviolet absorption spectroscopy, and electrochemical impedance spectroscopy, and showed a pair of direct redox peaks of the FeIII/FeII couple. The composite–[BMIM][PF6]‐modified glassy carbon electrode showed excellent electrocatalytic activity toward the reduction of trichloroacetic acid (TCA) in neutral media due to the synergic effect among SWNTs, [BMIM][PF6], and porphyrin, which led to a highly sensitive and stable amperometric biosensor for TCA with a linear range from 9.0×10?7 to 1.4×10?4 M . The detection limit was 3.8×10?7 M at a signal‐to‐noise ratio of 3. The TCA biosensor had good analytical performance, such as rapid response, good reproducibility, and acceptable accuracy, and could be successfully used for the detection of residual TCA in polluted water. The functional composite in ionic liquid provides a facile way to not only obtain the direct electrochemistry of water‐insoluble porphyrin, but also construct novel biosensors for monitoring analytes in real environmental samples.  相似文献   

20.
Summary: The ring‐opening polymerization of N‐carboxy anhydrides (NCA) of γ‐benzyl‐L ‐glutamate and β‐benzyl‐L ‐aspartate was studied in the presence of an ammonium chloride‐functionalized poly(ethylene oxide) macroinitiator, which possibly prevents side reactions such as NCA deprotonation. Although polymerization initiated by such macroinitiators was found to be quite slow, well‐defined conjugates of poly(ethylene oxide)‐block‐poly(γ‐benzyl‐L ‐glutamate) and poly(ethylene oxide)‐block‐poly(β‐benzyl‐L ‐aspartate) with polydispersity indexes as low as 1.05 were prepared. Moreover, the presence of ammonium chloride chain ends significantly prevented end‐group cyclization of poly(γ‐benzyl‐L ‐glutamate) after polymerization.

Gel permeation chromatograms recorded for the diblock copolymers of poly(ethylene oxide)‐block‐poly(γ‐benzyl‐L ‐glutamate) prepared by N‐carboxy anhydride polymerization initiated either by PEO‐NH2 macroinitiator or PEO‐NHequation/tex2gif-stack-1.gifCl macroinitiator.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号