首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of meso‐substituted boron‐bipyrromethene (BODIPY) dyes are synthesized and their laser and photophysical properties systematically studied. Laser emission covering a wide visible spectral region (from blue to orange) is obtained by just changing the electron donor character of the heteroatom at position 8. The additional presence of methyl groups at positions 3 and 5 results in dyes with a photostability similar to that of the unsubstituted dye but with much improved efficiency. Correlation of the lasing properties of the different dyes to their photophysical properties provides inklings to define synthetic strategies of new BODIPY dyes with enhanced efficiency and modulated wavelength emission over the visible spectral region.  相似文献   

2.
A straightforward synthetic protocol to directly incorporate stabilized 1,3‐dicarbonyl C nucleophiles to the meso position of BODIPY (4,4‐difluoro‐4‐bora‐3a,4a‐diaza‐s‐indacene) is reported. Soft nucleophiles generated by deprotonation of 1,3‐dicarbonyl derivatives smoothly displace the 8‐methylthio group from 8‐(methylthio)BODIPY analogues in the presence of CuI thiophenecarboxylate in stoichiometric amounts at room temperature. Seven highly fluorescent new derivatives are prepared with varying yields (20–92 %) in short reaction times (5–30 min). The excellent photophysical properties of the new dyes allow focusing on applications never analyzed before for BODIPYs substituted with stabilized C nucleophiles such as pH sensors and lasers in liquid and solid state, highlighting the relevance of the synthetic protocol described in the present work. The attainment of these dyes, with strong UV absorption and highly efficient and stable laser emission in the green spectral region, concerns to one of the greatest challenges in the ongoing development of advanced photonic materials with relevant applications. In fact, organic dyes with emission in the green are the only ones that allow, by frequency‐doubling processes, the generation of tunable ultraviolet (250‐350 nm) radiation, with ultra‐short pulses.  相似文献   

3.
A series of fused‐ring‐expanded aza‐boradiazaindacene (aza‐BODIPY) dyes have been synthesized by reacting arylmagnesium bromides with phthalonitriles or naphthalenedicarbonitriles. An analysis of the structure–property relationships has been carried out based on X‐ray crystallography, optical spectroscopy, and theoretical calculations. Benzo and 1,2‐naphtho‐fused 3,5‐diaryl aza‐BODIPY dyes display markedly red shifted absorption and emission bands in the near‐IR region (>700 nm) due to changes in the energies of the frontier MOs relative to those of 1,3,5,7‐tetraaryl aza‐BODIPYs. Only one 1,2‐naphtho‐fused aza‐BODIPY of the three possible isomers is formed due to steric effects, and 2,3‐naphtho‐fused compounds could not be characterized because the final BF2 complexes are unstable in solution. The incorporation of a  N(CH3)2 group at the para‐positions of a benzo‐fused 3,5‐diaryl aza‐BODIPY quenches the fluorescence in polar solvents and results in a ratiometric pH response, which could be used in future practical applications as an NIR “turn‐on” fluorescence sensor.  相似文献   

4.
A series of water‐soluble red‐emitting distyryl‐borondipyrromethene (BODIPY) dyes were designed and synthesized by using three complementary approaches aimed at introducing water‐solubilizing groups on opposite faces of the fluorescent core to reduce or completely suppress self‐aggregation. An additional carboxylic acid functional group was introduced at the pseudo‐meso position of the BODIPY scaffold for conjugation to amine‐containing biomolecules/biopolymers. The optical properties of these dyes were evaluated under simulated physiological conditions (i.e., phosphate‐buffered saline (PBS), pH 7.5) or in pure water. The emission wavelength (λmax) of these labels was found in the 640–660 nm range with quantum yields from modest to unprecedentedly high values (4 to 38 %). The bioconjugation of these distyryl‐BODIPY dyes with bovine serum albumin (BSA) and the monoclonal antibody (mAb) 12A5 was successfully performed under mild aqueous conditions.  相似文献   

5.
In this study, novel mono- and dipyridylvinyl boron dipyrromethene dyes are prepared to compare their photodynamic antimicrobial chemotherapy (PACT) activities against Staphylococcus aureus to the corresponding core dyes. Pyridylvinyl substitution at the 3- or 3,5-positions of a meso-4-bromophenylBODIPY core dye via a Knoevenagel reaction with an aromatic 2-bromopyridinecarboxaldehyde shifts the major BODIPY spectral band to longer wavelength. The extended π-conjugation red shifts the main spectral band into the 602–618 nm region in CHCl3, THF, ethanol and DMSO after monopyridylvinyl substitution and to 685–704 nm after dipyridylvinyl substitution. An enhancement of the population of the T1 state through the incorporation of iodine atoms at the 2,6-positions results in moderately high singlet oxygen quantum yields in DMSO. The π-extended dyes were found to have significantly lower PACT activities than the diiodinated core dye.  相似文献   

6.
A study of visible‐light‐driven hydrogen production using a multicomponent system consisting of different boron dipyrromethene (BODIPY) dyes, triethylamine and [{Pd(PPh3)Cl2}2] from THF/water mixtures is presented. A trio of meso‐mesityl BODIPY dyes display the best activities and long‐term stabilities of more than ten days with the 2,6‐diiodo derivative showing the best performance.  相似文献   

7.
《化学:亚洲杂志》2017,12(17):2216-2220
A series of novel BODIPY dyes has been prepared through the introduction of an N‐bridged annulated meso ‐phenyl ring at one of the β‐positions of the BODIPY core. An unusual blueshift of the main spectral bands is observed, since the fusion of a meso ‐substituent results in a marked relative destabilization of the LUMO. The greater rigidity of the ring‐fused structure leads to very high fluorescence quantum yields. The position of the main spectral bands can be fine‐tuned by introducing electron withdrawing and donating groups onto the meso ‐phenyl ring.  相似文献   

8.
A new library of E‐ and C‐4,4‐difluoro‐4‐bora‐3a,4a‐diaza‐s‐indacene (BODIPY) derivatives has been synthesized through a straightforward protocol from commercially available BODIPY complexes, and a systematic study of the photophysical properties and laser behavior related to the electronic properties of the B‐substituent group (alkynyl, cyano, vinyl, aryl, and alkyl) has been carried out. The replacement of fluorine atoms by electron‐withdrawing groups enhances the fluorescence response of the dye, whereas electron‐donor groups diminish the fluorescence efficiency. As a consequence, these compounds exhibit enhanced laser action with respect to their parent dyes, both in liquid solution and in the solid phase, with lasing efficiencies under transversal pumping up to 73 % in liquid solution and 53 % in a solid matrix. The new dyes also showed enhanced photostability. In a solid matrix, the derivative of commercial dye PM597 that incorporated cyano groups at the boron center exhibited a very high lasing stability, with the laser emission remaining at the initial level after 100 000 pump pulses in the same position of the sample at a 10 Hz repetition rate. Distributed feedback laser emission was demonstrated with organic films that incorporated parent dye PM597 and its cyano derivative. The films were deposited onto quartz substrates engraved with appropriate periodical structures. The C derivative exhibited a laser threshold lower than that of the parent dye as well as lasing intensities up to three orders of magnitude higher.  相似文献   

9.
A new series of boron–dipyrromethene (BDP, BODIPY) dyes with dihydronaphthalene units fused to the β‐pyrrole positions ( 1 a – d , 2 ) has been synthesised and spectroscopically investigated. All the dyes, except pH‐responsive 1 d in polar solvents, display intense emission between 550–700 nm. Compounds 1 a and 1 b with a hydrogen atom and a methyl group in the meso position of the BODIPY core show spectroscopic properties that are similar to those of rhodamine 101, thus rendering them potent alternatives to the positively charged rhodamine dyes as stains and labels for less polar environments or for the dyeing of latex beads. Compound 1 d , which carries an electron‐donating 4‐(dimethylamino)phenyl group in the meso position, shows dual fluorescence in solvents more polar than dibutyl ether and can act as a pH‐responsive “light‐up” probe for acidic pH. Correlation of the pKa data of 1 d and several other meso‐(4‐dimethylanilino)‐substituted BODIPY derivatives allowed us to draw conclusions on the influence of steric crowding at the meso position on the acidity of the aniline nitrogen atom. Preparation and investigation of 2 , which carries a nitrogen instead of a carbon as the meso‐bridgehead atom, suggests that the rules of colour tuning of BODIPYs as established so far have to be reassessed; for all the reported couples of meso‐C‐ and meso‐N‐substituted BODIPYs, the exchange leads to pronounced redshifts of the spectra and reduced fluorescence quantum yields. For 2 , when compared with 1 a , the opposite is found: negligible spectral shifts and enhanced fluorescence. Additional X‐ray crystallographic analysis of 1 a and quantum chemical modelling of the title and related compounds employing density functional theory granted further insight into the features of such sterically crowded chromophores.  相似文献   

10.
A series of meso‐ester‐substituted BODIPY derivatives 1–6 are synthesized and characterized. In particular, dyes functionalized with oligo(ethylene glycol) ether styryl or naphthalene vinylene groups at the α positions of the BODIPY core ( 3 – 6 ) become partially soluble in water, and their absorptions and emissions are located in the far‐red or near‐infrared region. Three synthetic approaches are attempted to access the meso‐carboxylic acid (COOH)‐substituted BODIPYs 7 and 8 from the meso‐ester‐substituted BODIPYs. Two feasible synthetic routes are developed successfully, including one short route with only three steps. The meso‐COOH‐substituted BODIPY 7 is completely soluble in pure water, and its fluorescence maximum reaches around 650 nm with a fluorescence quantum yield of up to 15 %. Time‐dependent density functional theory calculations are conducted to understand the structure–optical properties relationship, and it is revealed that the Stokes shift is dependent mainly on the geometric change from the ground state to the first excited singlet state. Furthermore, cell staining tests demonstrate that the meso‐ester‐substituted BODIPYs ( 1 and 3 – 6 ) and one of the meso‐COOH‐substituted BODIPYs ( 8 ) are very membrane‐permeable. These features make these meso‐ester‐ and meso‐COOH‐substituted BODIPY dyes attractive for bioimaging and biolabeling applications in living cells.  相似文献   

11.
Several metal complexes with a boron dipyrromethene (BODIPY)‐functionalized N‐heterocyclic carbene (NHC) ligand 4 were synthesized. The fluorescence in [( 4 )(SIMes)RuCl2(ind)] complex is quenched (Φ=0.003), it is weak in [( 4 )PdI2(Clpy)] (Φ=0.033), and strong in [( 4 )AuI] (Φ=0.70). The BODIPY‐tagged complexes can experience pronounced changes in the brightness of the fluorophore upon ligand‐exchange and ligand‐dissociation reactions. Complexes [( 4 )MX(1,5‐cyclooctadiene)] (M=Rh, Ir; X=Cl, I; Φ=0.008–0.016) are converted into strongly fluorescent complexes [( 4 )MX(CO)2] (Φ=0.53–0.70) upon reaction with carbon monoxide. The unquenching of the Rh and Ir complexes appears to be a consequence of the decreased electron density at Rh or Ir in the carbonyl complexes. In contrast, the substitution of an iodo ligand in [( 4 )AuI] by an electron‐rich thiolate decreases the brightness of the BODIPY fluorophore, rendering the BODIPY as a highly sensitive probe for changes in the coordination sphere of the transition metal.  相似文献   

12.
A simple approach to the highly fluorescent near‐infrared aza‐BODIPY dyes with higher fluorescence quantum yields (up to 0.81 in toluene) in comparison with their known analogues is presented. Our approach is based on the restricted rotations of the 1,7‐phenyl groups to the mean plane of the aza‐BODIPYs, which is achieved through the installation of bulky substituents on the 1,7‐phenyl groups of aza‐BODIPYs and results in a reduced nonradiative relaxation process in solution. The large torsion angles between the 1,7‐phenyl groups and the aza‐BODIPY core (?1 and ?2 in these novel conformationally restricted aza‐BODIPYs) were confirmed by X‐ray diffraction studies.  相似文献   

13.
A series of new functionalized mono‐ and dibenzo‐appended BODIPY dyes were synthesized from a common tetrahydroisoindole precursor following two different synthetic routes. Route A involved the assembly of the BODIPY core prior to aromatization, while in Route B the aromatization step was performed first. In general, Route A gave higher yields of the target dibenzo‐BODIPYs, due to the ease of aromatization of the BODIPYs compared with the corresponding dipyrromethenes, probably due to their higher stability under the oxidative conditions (2,3‐dichloro‐5,6‐dicyano‐1,4‐benzoquinone in refluxing toluene). However, due to the slow oxidation of highly electron‐deficient BODIPY 3 c bearing a meso‐C6F5 group, dibenzo‐BODIPY 4 c was obtained, in 35 % overall from dipyrromethane, only by Route B. Computational calculations performed at the 6‐31G(d,p) level are in agreement with the experimental results, showing similar relative energies for all reaction intermediates in both routes. In addition, BODIPY 3 c had the highest molecular electrostatic potential (MEPN), confirming its high electron deficiency and consequent resistance toward oxidation. X‐ray analyses of eight BODIPYs and several intermediates show that benzannulation further enhances the planarity of these systems. The π‐extended BODIPYs show strong red‐shifted absorptions and emissions, about 50–60 nm per benzoannulated ring, at 589–658 and 596–680 nm, respectively. In particular, db‐BODIPY 4 c bearing a meso‐C6F5 group showed the longest λmax of absorption and emission, along with the lowest fluorescence quantum yield (0.31 in CH2Cl2); on the other hand monobenzo‐BODIPY 8 showed the highest quantum yield (0.99) of this series. Cellular investigations using human carcinoma HEp2 cells revealed high plasma membrane permeability for all dibenzo‐BODIPYs, low dark‐ and photo‐cytotoxicities and intracellular localization in the cell endoplasmic reticulum, in addition to other organelles. Our studies indicate that benzo‐appended BODIPYs, in particular the highly stable meso‐substituted BODIPYs, are promising fluorophores for bioimaging applications.  相似文献   

14.
The unique properties of boron dipyrromethene (BODIPY) dyes including facile synthesis, high absorption coefficients, and delocalized molecular orbitals as well as excellent photochemical and thermal stability, make them promising as materials for organic solar cells. Accordingly, in this study three A‐D ‐A structural small molecules of BDTT‐BODIPY, FL‐BODIPY, and TT‐BODIPY have been synthesized, in which two BODIPY acceptor units are symmetrically conjugated to 4,8‐bis(5‐(2‐ethylhexyl) thiophen‐2‐yl)benzo[1,2‐b:4,5‐b]dithiophene (BDTT), 9,9‐dioctyl‐9H‐fluorene (FL), and thieno[3,2‐b]thiophene (TT) donor cores, respectively. The manipulation of the structural parameters significantly improves the performances of the BHJ OSCs, which show power conversion efficiencies of 4.75 %, 1.51 %, and 1.67 % based on [6,6]‐phenyl C71‐butyric acid methyl ester (PC71BM) as the acceptor material and BDTT‐BODIPY, FL‐BODIPY, and TT‐BODIPY as the donor materials, respectively.  相似文献   

15.
A 2,6‐distyryl‐substituted boradiazaindacene (BODIPY) dye and a new series of 2,6‐p‐dimethylaminostyrene isomers containing both α‐ and β‐position styryl substituents were synthesized by reacting styrene and p‐dimethylaminostyrene with an electron‐rich diiodo‐BODIPY. The dyes were characterized by X‐ray crystallography and NMR spectroscopy and their photophysical properties were investigated and analyzed by carrying out a series of theoretical calculations. The absorption spectra contain markedly redshifted absorbance bands due to conjugation between the styryl moieties and the main BODIPY fluorophore. Very low fluorescence quantum yields and significant Stokes shifts are observed for 2,6‐distyryl‐substituted BODIPYs, relative to analogous 3,5‐distyryl‐ and 1,7‐distyryl‐substituted BODIPYs. Although the fluorescence of the compound with β‐position styryl substituents on both pyrrole moieties and one with both β‐ and α‐position substituents was completely quenched, the compound with only α‐position substituents exhibits weak emission in polar solvents, but moderately intense emission with a quantum yield of 0.49 in hexane. Protonation studies have demonstrated that these 2,6‐p‐dimethylaminostyrene isomers can be used as sensors for changes in pH. Theoretical calculations provide strong evidence that styryl rotation and the formation of non‐emissive charge‐separated S1 states play a pivotal role in shaping the fluorescence properties of these dyes. Molecular orbital theory is used as a conceptual framework to describe the electronic structures of the BODIPY core and an analysis of the angular nodal patterns provides a reasonable explanation for why the introduction of substituents at different positions on the BODIPY core has markedly differing effects.  相似文献   

16.
The facile synthesis of Group 9 RhIII porphyrin‐aza‐BODIPY conjugates that are linked through an orthogonal Rh?C(aryl) bond is reported. The conjugates combine the advantages of the near‐IR (NIR) absorption and intense fluorescence of aza‐BODIPY dyes with the long‐lived triplet states of transition metal rhodium porphyrins. Only one emission peak centered at about 720 nm is observed, irrespective of the excitation wavelength, demonstrating that the conjugates act as unique molecules rather than as dyads. The generation of a locally excited (LE) state with intramolecular charge‐transfer (ICT) character has been demonstrated by solvatochromic effects in the photophysical properties, singlet oxygen quantum yields in polar solvents, and by the results of density functional theory (DFT) calculations. In nonpolar solvents, the RhIII conjugates exhibit strong aza‐BODIPY‐centered fluorescence at around 720 nm (ΦF=17–34 %), and negligible singlet oxygen generation. In polar solvents, enhancements of the singlet‐oxygen quantum yield (ΦΔ=19–27 %, λex=690 nm) have been observed. Nanosecond pulsed time‐resolved absorption spectroscopy confirms that relatively long‐lived triplet excited states are formed. The synthetic methodology outlined herein provides a useful strategy for the assembly of functional materials that are highly desirable for a wide range of applications in material science and biomedical fields.  相似文献   

17.
Recently, we demonstrated the potential of a [18F]‐trimethylammonium BODIPY dye for cardiac imaging. This is the first example of the use of the [18F]‐ammonium BODIPY dye for positron emission tomography (PET) myocardial perfusion imaging (MPI). In this report, we extend our study to other ammonium BODIPY dyes with different nitrogen substituents. These novel ammonium BODIPY dyes were successfully prepared and radiolabeled by the SnCl4‐assisted 18F–19F isotopic exchange method. The microPET results and the biodistribution data reveal that nitrogen substituent changes have a significant effect on the in vivo and pharmacological properties of the tracers. Of the novel [18F]‐ammonium BODIPY dyes prepared in this work, the [18F]‐dimethylethylammonium BODIPY is superior in terms of myocardium uptake and PET imaging contrast. These results support our hypothesis that the ammonium BODIPY dyes have a great potential for use as PET/optical dual‐modality MPI probes.  相似文献   

18.
A set of linear and dissymmetric BODIPY‐bridged push–pull dyes are synthesized. The electron‐donating substituents are anisole and dialkylanilino groups. The strongly electron‐accepting moiety, a 1,1,4,4‐tetracyanobuta‐1,3‐diene (TCBD) group, is obtained by insertion of an electron‐rich ethyne into tetracyanoethylene. A nonlinear push–pull system is developed with a donor at the 5‐position of the BODIPY core and the acceptor at the 2‐position. All dyes are fully characterized and their electrochemical, linear and nonlinear optical properties are discussed. The linear optical properties of dialkylamino compounds show strong solvatochromic behavior and undergo drastic changes upon protonation. The strong push–pull systems are non‐fluorescent and the TCBD‐BODIPY dyes show diverse photochemistry and electrochemistry, with several reversible reduction waves for the tetracyanobutadiene moiety. The hyperpolarizability μβ of selected compounds is evaluated using the electric‐field‐induced second‐harmonic generation technique. Two of the TCBD‐BODIPY dyes show particularly high μβ (1.907 μm) values of 2050×10?48 and 5900×10?48 esu. In addition, one of these dyes shows a high NLO contrast upon protonation–deprotonation of the donor residue.  相似文献   

19.
A new series of aza‐BODIPY derivatives ( 4 a – 4 c , 5 a , c , and 6 b , c ) were synthesized and their excited‐state properties, such as their triplet excited state and the yield of singlet‐oxygen generation, were tuned by substituting with heavy atoms, such as bromine and iodine. The effect of substitution has been studied in detail by varying the position of halogenation. The core‐substituted dyes showed high yields of the triplet excited state and high efficiencies of singlet‐oxygen generation when compared to the peripheral‐substituted systems. The dye 6 c , which was substituted with six iodine atoms on the core and peripheral phenyl ring, showed the highest quantum yields of the triplet excited state (ΦT=0.86) and of the efficiency of singlet‐oxygen generation (ΦΔ=0.80). Interestingly, these dyes were highly efficient as photooxygenation catalysts under artificial light, as well as under normal sunlight conditions. The uniqueness of these aza‐BODIPY systems is that they are stable under irradiation conditions, possess strong red‐light absorption (620–680 nm), exhibit high yields of singlet‐oxygen generation, and act as efficient and sustainable catalysts for photooxygenation reactions.  相似文献   

20.
Several new boron dipyrromethene/N,N‐dimethylaminopyridine (BODIPY‐DMAP) assemblies were synthesized as precursors for bimodal imaging probes (optical imaging, OI/positron emission tomography, PET). The photophysical properties of the new compounds were also studied. The first proof‐of‐concept was obtained with the preparation of several new BODIPY‐labeled bombesins and evaluation of the affinity for bombesin receptors by using a competition binding assay. Fluorination reactions were investigated on DMAP‐BODIPY precursors as well as on DMAP‐BODIPY‐labeled bombesins. Chemical modifications on the BODIPY core were also performed to obtain luminescent dyes emitting in the therapeutic window (650–900 nm), suitable for in vivo imaging, making these compounds promising precursors for PET/optical dual‐modality imaging agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号