首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《化学:亚洲杂志》2017,12(21):2772-2779
Single‐molecule magnets (SMMs) exhibiting slow relaxation of magnetization of purely molecular origin are highly attractive owing to their potential applications in spintronic devices, high‐density information storage, and quantum computing. In particular, lanthanide SMMs have been playing a major role in the advancement of this field because of the large intrinsic magnetic anisotropy of lanthanide metal ions. Herein, some recent breakthroughs that are changing the perspective of the field are highlighted, with special emphasis on synthetic strategies towards the design of high‐performance SMMs.  相似文献   

2.
In recent years, plentiful lanthanide‐based (TbIII, DyIII, and ErIII) single‐molecule magnets (SMMs) were studied, while examples of other lanthanides, for example, TmIII are still unknown. Herein, for the first time, we show that by rationally manipulating the coordination sphere, two thulium compounds, 1 [(Tp)Tm(COT)] and 2 [(Tp*)Tm(COT)] (Tp=hydrotris(1‐pyrazolyl)borate; COT=cyclooctatetraenide; Tp*=hydrotris(3,5‐dimethyl‐1‐pyrazolyl)borate), can adopt the structure of non‐Kramers SMMs and exhibit their behaviors. Dynamic magnetic studies indicated that both compounds showed slow magnetic relaxation under dc field and a relatively high effective energy barrier (111 K for 1 , 46 K for 2 ). Magnetic diluted 1 a [(Tp)Tm0.05Y0.95(COT)] and 2 a [(Tp*)Tm0.05Y0.95(COT)] even exhibited magnetic relaxation under zero dc field. Relativistic ab initio calculations combined with single‐crystal angular‐resolved magnetometry measurements revealed the strong easy axis anisotropy and nearly degenerated ground doublet states. The comparison of 1 and 2 highlights the importance of local symmetry for obtaining Tm SMMs.  相似文献   

3.
Uranium‐based compounds have been put forward as ideal candidates for the design of single‐molecule magnets (SMMs) with improved properties, but to date, only two examples of exchange‐coupled 3d–5f SMM containing uranium have been reported and both are based on the MnII ion. Here we have synthesized the first examples of exchange‐coupled uranium SMMs based on FeII and NiII. The SMM behavior of these complexes containing a quasi linear {M?O?U?O?M} core arises from intramolecular Fe?U and Ni?U exchange interactions combined with the high Ising anisotropy of the uranyl(V) moiety. The measured values of the relaxation barrier (53.9±0.9 K in the UFe2 complex and of 27.4±0.5 K in the UNi2 complex) show clearly the dependency on the spin value of the transition metal, providing important new information for the future design of improved uranium‐based SMMs.  相似文献   

4.
Over the past decade, lanthanide compounds have become of increasing interest in the field of Single Molecule Magnets (SMMs) due to the large inherent anisotropy of the metal ions. Heavy lanthanide metal systems, in particular those containing the dysprosium(III) ion, have been extensively employed to direct the formation of a series of SMMs. Although remarkable progress is being made regarding the synthesis and characterization of lanthanide-based SMMs, the understanding and control of the relaxation dynamics of strongly anisotropic systems represents a formidable challenge, since the dynamic behaviour of lanthanide-based SMMs is significantly more complex than that of transition metal systems. This perspective paper describes illustrative examples of pure dysprosium(III)-based SMMs, published during the past three years, showing new and fascinating phenomena in terms of magnetic relaxation, aiming at shedding light on the features relevant to modulating relaxation dynamics of polynuclear lanthanide SMMs.  相似文献   

5.
Unlike electronics, which is based on the freedom of the charge of an electron whose memory is volatile, spintronics is based on the freedom of the charge, spin, and orbital of an electron whose memory is non‐volatile. Although in most GMR, TMR, and CMR systems, bulk or classical magnets that are composed of transition metals are used, this Focus Review considers the growing use of single‐molecule magnets (SMMs) that are composed of multinuclear metal complexes and nanosized magnets, which exhibit slow magnetic‐relaxation processes and quantum tunneling. Molecular spintronics, which combines spintronics and molecular electronics, is an emerging field of research. Using molecules is advantageous because their electronic and magnetic properties can be manipulated under specific conditions. Herein, recent developments in [LnPc]‐based multiple‐decker SMMs on surfaces for molecular spintronic devices are presented. First, we discuss the strategies for preparing single‐molecular‐memory devices by using SMMs. Next, we focus on the switching of the Kondo signal of [LnPc]‐based multiple‐decker SMMs that are adsorbed onto surfaces, their characterization by using STM and STS, and the relationship between the molecular structure, the electronic structure, and the Kondo resonance of [TbPc2]. Finally, the field‐effect‐transistor (FET) properties of surface‐adsorbed [LnPc2] and [Ln2Pc3] cast films are reported, which is the first step towards controlling SMMs through their spins for applications in single‐molecular memory and spintronics devices.  相似文献   

6.
Remanence and coercivity are the basic characteristics of permanent magnets. They are also tightly correlated with the existence of long relaxation times of magnetization in a number of molecular complexes, called accordingly single‐molecule magnets (SMMs). Up to now, hysteresis loops with large coercive fields have only been observed in polynuclear metal complexes and metal‐radical SMMs. On the contrary, mononuclear complexes, called single‐ion magnets (SIM), have shown hysteresis loops of butterfly/phonon bottleneck type, with negligible coercivity, and therefore with much shorter relaxation times of magnetization. A mononuclear ErIII complex is presented with hysteresis loops having large coercive fields, achieving 7000 Oe at T=1.8 K and field variation as slow as 1 h for the entire cycle. The coercivity persists up to about 5 K, while the hysteresis loops persist to 12 K. Our finding shows that SIMs can be as efficient as polynuclear SMMs, thus opening new perspectives for their applications.  相似文献   

7.
Most homogeneous catalysis relies on the design of metal complexes to trap and convert substrates or small molecules to value‐added products. Organometallic lanthanide compounds first gave a tantalizing glimpse of their potential for catalytic C? H bond transformations with the selective cleavage of one C? H bond in methane by bis(permethylcyclopentadienyl)lanthanide methyl [(η5‐C5Me5)2Ln(CH3)] complexes some 25 years ago. Since then, numerous metal complexes from across the periodic table have been shown to selectively activate hydrocarbon C? H bonds, but the challenges of closing catalytic cycles still remain; many f‐block complexes show great potential in this important area of chemistry.  相似文献   

8.
Industrial data storage application based on single-molecule magnets (SMMs) necessitates not only strong magnetic remanence at high temperatures but also requires the implementation of SMMs into a solid material to increase their durability and addressability. While the understanding of the relationship between the local structure of the metal and the resulting magnetic behavior is well understood in molecular systems, it remains challenging to establish a similar understanding for magnetic materials, especially for isolated lanthanide sites on surfaces. For instance, dispersed Dy(III) ions on silica prepared via surface organometallic chemistry exhibit slow magnetic relaxation at low temperatures, but the origin of these properties remains unclear. In this work, we modelled ten neutral complexes with coordination numbers (CN) between three and six ([Dy(OSiF3)3(O(SiF3)2)CN-3]) representing possible surface sites for dispersed Dy(III) ions and investigated their SMM potential via ab initio CASSCF/RASSI-SO calculations. Detailed analysis of the data shows the strong influence of the spatial position of the anionic ligands while the neutral ligands only play a minor role for the magnetic properties. In particular, a T-shape like orientation of the anionic ligands is predicted to exhibit good SMM properties making it a promising targeted coordination environment for molecular and surface-based SMMs.  相似文献   

9.
Mixed‐metal uranium compounds are very attractive candidates in the design of single‐molecule magnets (SMMs), but only one 3d–5f hetero‐polymetallic SMM containing a uranium center is known. Herein, we report two trimeric heterodimetallic 3d–5f complexes self‐assembled by cation–cation interactions between a uranyl(V) complex and a TPA‐capped MII complex (M=Mn ( 1 ), Cd ( 2 ); TPA=tris(2‐pyridylmethyl)amine). The metal centers were strategically chosen to promote the formation of discrete molecules rather than extended chains. Compound 1 , which contains an almost linear {Mn? O?U?O? Mn} core, exhibits SMM behavior with a relaxation barrier of 81±0.5 K—the highest reported for a mono‐uranium system—arising from intramolecular Mn–U exchange interactions combined with the high Ising anisotropy of the uranyl(V) moiety. Compound 1 also exhibits an open magnetic hysteresis loop at temperatures less than 3 K, with a significant coercive field of 1.9 T at 1.8 K.  相似文献   

10.
Dong Shao  Xin‐Yi Wang 《中国化学》2020,38(9):1005-1018
Single‐molecule magnets (SMMs) are paramagnetic molecules that can be magnetized below a certain temperature and have potential applications in high‐density information storage, magnetic qubits, spintronic devices, etc. The discovery of the first SMM, Mn12, opened a new era of molecular magnetism and promoted collaborative researches between chemists and physicists for their exotic quantum as well as classical magnetic properties. In the recent past, great efforts have been made to develop strategies for constructing new SMMs with high energy barriers (Ueff) and blocking temperatures (TB), resulting in great and fast development of SMMs. In this concise review, we highlight the main synthetic approaches and representative results in the design and synthesis of high performance SMMs. We hope to give the readers a basic understanding of SMMs and a snapshot of the representative researches on SMMs from a perspective of synthetic chemists.  相似文献   

11.
ptert‐Butylcalix[4]arene is a bowl‐shaped molecule capable of forming a range of polynuclear metal clusters under different experimental conditions. ptert‐Butylcalix[8]arene (TBC[8]) is a significantly more flexible analogue that has previously been shown to form mono‐ and binuclear lanthanide (Ln) metal complexes. The latter (cluster) motif is commonly observed and involves the calixarene adopting a near double‐cone conformation, features of which suggested that it may be exploited as a type of assembly node in the formation of larger polynuclear lanthanide clusters. Variation in the experimental conditions employed for this system provides access to Ln1, Ln2, Ln4, Ln5, Ln6, Ln7 and Ln8 complexes, with all polymetallic clusters containing the common binuclear lanthanide fragment. Closer inspection of the structures of the polymetallic clusters reveals that all but one (Ln8) are in fact based on metal octahedra or the building blocks of octahedra, with the identity and size of the final product dependent upon the basicity of the solution and the deprotonation level of the TBC[8] ligand. This demonstrates both the versatility of the ligand towards incorporation of additional metal centres, and the associated implications for tailoring the magnetic properties of the resulting assemblies in which lanthanide centres may be interchanged.  相似文献   

12.
Anisotropic magnetic exchange is of great value for the design of high performance molecular nanomagnets. In the present work, enhanced single‐chain magnet (SCM) behavior is observed for a MoIII–MnII chain that exhibits anisotropic magnetic exchange. Self‐assembly of the pentagonal bipyramidal [Mo(CN)7]4? anion and the MnII unit with a tridentate ligand results in a neutral double zigzag 2,4‐ribbon structure which exhibits SCM behavior with a high relaxation barrier of 178(4) K. Open magnetic hysteresis loops are observed below 5.2 K, with a coercive field of 1.5 T at 2 K. Interestingly, this SCM can be considered to be a result of a step‐wise process based on our previously reported Mn2Mo single‐molecule magnets (SMMs).  相似文献   

13.
Heterometallic 3d‐4f complexes are being investigated, for some time, as being useful in molecular magnetism, particularly as single‐molecule magnets (SMMs). This interest is primarily because of the possibility of an increased ligand‐mediated super‐exchange phenomenon between the 3d and 4f metal ions. Such an interaction, apart from bestowing a favorable ground‐state spin to the complex, also assists in reducing quantum tunneling of magnetization that is widely prevalent in SMMs making them to lose magnetization. However, assembling both 3d as well as 4f ions using same ligand system is challenging and involves the design of multi‐site coordination ligands with specific coordination compartments for the 3d and the 4f metal ions while at the same time allowing these disparate metal ions to be linked to each other through a bridging ligating atom. This review presents a summary of the 3d‐4f complexes primarily derived from the author's work while alluding to important examples from the literature. We also provide an outlook for the future design of such complexes.  相似文献   

14.
Ever since the first example of a double‐decker complex (SnPc2) was discovered in 1936, MPc2 complexes with π systems and chemical and physical stabilities have been used as components in molecular electronic devices. More recently, in 2003, TbPc2 complexes were shown to be single‐molecule magnets (SMMs), and researchers have utilized their quantum tunneling of the magnetization (QTM) and magnetic relaxation behavior in spintronic devices. Herein, recent developments in LnIII‐Pc‐based multiple‐decker SMMs on surfaces for molecular spintronic devices are presented. In this account, we discuss how dinuclear TbIII‐Pc multiple‐decker complexes can be used to elucidate the relationship between magnetic dipole interactions and SMM properties, because these complexes contain two TbPc2 units in one molecule and their intramolecular TbIII?TbIII distances can be controlled by changing the number of stacks. Next, we focus on the switching of the Kondo signal of TbIII‐Pc‐based multiple‐decker SMMs that are adsorbed onto surfaces, their characterization using STM and STS, and the relationship between the molecular structure, the electronic structure, and the Kondo resonance of TbIII‐Pc multiple‐decker complexes.

  相似文献   


15.
Herein, we report the fabrication of a sensitive ratiometric and colorimetric luminescent thermometer with a wide operating‐temperature range, from cryogenic temperatures up to high temperatures, through the combination of lanthanide and transition metal complexes. Benefiting from the transition metal complex as a self‐reference, the lanthanide content in the mixed‐coordination complex, Eu0.05(Mebip‐mim bromine)0.15Zn0.95(Mebip‐mim bromine)1.9, was lowered to 5 %.  相似文献   

16.
Magnetic dipole interactions are dominate in quasi one‐dimensional (1D) molecular magnetic materials, in which TbNcPc units (Tb3+=terbium(III) ion, Nc2?=naphthalocyaninato, Pc2?=phthalocyaninato) adopt a structure similar to TbPc2 single‐molecule magnets (SMMs). The magnetic properties of the [TbNcPc]0/+ (neutral 1 and cationic 2 ) with 1D structures are significantly different from those of a magnetically diluted sample ( 3 ). In particular, the magnetic relaxation time (τ) of 2 in the low‐temperature region is five orders of magnitude slower than that of 3 . Furthermore, the coercivity (HC) of 2 remained up to about 20 K. The single‐ion anisotropy of Tb3+ ions in a 1D structure and the magnetic dipole interactions acting among molecules determines the direction of the magnetic properties. These results show that the spin dynamics can be improved by manipulating the arrangement of SMMs in the solid state.  相似文献   

17.
Eight isomorphous metal‐organic frameworks: [Ln2(TATAB)2(H2O)(DMA)6]·5H2O (Ln = Sm ( 1 ), Eu ( 2 ), Gd ( 3 ), Tb ( 4 ), Dy ( 5 ), Er ( 6 ), Tm ( 7 ), Yb ( 8 )); TATAB = 4,4′,4″‐s‐triazine‐1,3,5‐triyl‐p‐aminobenzoate, DMA = N,N‐dimethylacetamide), were synthesized by the self‐assembly of lanthanide ions, TATAB, DMA and H2O. Single‐crystal X‐ray crystallography reveals they are three dimensional frameworks with 2‐fold interpenetration. Solid‐state photoluminescence studies indicate ligand‐to‐metal energy transfer is more efficient for compounds 2 and 4 which exhibit intense characteristic lanthanide emissions at room temperature.  相似文献   

18.
A general giant‐spin Hamiltonian (GSH) describing an effective spin multiplet of an exchange‐coupled metal cluster with dominant Heisenberg interactions was derived from a many‐spin Hamiltonian (MSH) by treating anisotropic interactions at the third order of perturbation theory. Going beyond the existing second‐order perturbation treatment allows irreducible tensor operators of rank six (or corresponding Stevens operator equivalents) in the GSH to be obtained. Such terms were found to be of crucial importance for the fitting of high‐field EPR spectra of a number of single‐molecule magnets (SMMs). Also, recent magnetization measurements on trigonal and tetragonal SMMs have found the inclusion of such high‐rank axial and transverse terms to be necessary to account for experimental data in terms of giant‐spin models. While mixing of spin multiplets by local zero‐field splitting interactions was identified as the major origin of these contributions to the GSH, a direct and efficient microscopic explanation had been lacking. The third‐order approach developed in this work is used to illustrate the mapping of an MSH onto a GSH for an trigonal Fe3Cr complex that was recently investigated by high‐field EPR spectroscopy. Comparisons between MSH and GSH consider the simulation of EPR data with both Hamiltonians, as well as locations of diabolical points (conical intersections) in magnetic‐field space. The results question the ability of present high‐field EPR techniques to determine high‐rank zero‐field splitting terms uniquely, and lead to a revision of the experimental GSH parameters of the Fe3Cr SMM. Indeed, a bidirectional mapping between MSH and GSH effectively constrains the number of free parameters in the GSH. This notion may in the future facilitate spectral fitting for highly symmetric SMMs.  相似文献   

19.
The combination of redox and acid sites in lanthanide sulfonate leads to a potentially multifunctional catalyst for oxidation reactions. The title lanthanide sulfonate compound, [Yb6(CH2O6S2)4O(OH)8(H2O)6]n, exhibits a novel one‐dimensional columnar structure along the a direction. In the building unit of the columnar oligomer, a face‐capped lanthanide octahedron, viz. [Ln66‐O)(μ3‐OH)8]8+, is found with an interstitial μ6‐oxide group lying on an inversion centre, reports of which are rare in the literature. Adjacent hexameric cations are connected via two pairs of O—S—O bridges, thus forming a neutral column. The three‐dimensional network is stabilized by an intricate pattern of intercolumnar hydrogen bonds.  相似文献   

20.
Complexes of 4,10‐bis(phosphonomethyl)‐1,4,7,10‐tetraazacyclododecane‐1,7‐diacetic acid (trans‐H6do2a2p, H6 L ) with transition metal and lanthanide(III) ions were investigated. The stability constant values of the divalent and trivalent metal‐ion complexes are between the corresponding values of H4dota and H8dotp complexes, as a consequence of the ligand basicity. The solid‐state structures of the ligand and of nine lanthanide(III) complexes were determined by X‐ray diffraction. All the complexes are present as twisted‐square‐antiprismatic isomers and their structures can be divided into two series. The first one involves nona‐coordinated complexes of the large lanthanide(III) ions (Ce, Nd, Sm) with a coordinated water molecule. In the series of Sm, Eu, Tb, Dy, Er, Yb, the complexes are octa‐coordinated only by the ligand donor atoms and their coordination cages are more irregular. The formation kinetics and the acid‐assisted dissociation of several LnIII–H6 L complexes were investigated at different temperatures and compared with analogous data for complexes of other dota‐like ligands. The [Ce( L )(H2O)]3? complex is the most kinetically inert among complexes of the investigated lanthanide(III) ions (Ce, Eu, Gd, Yb). Among mixed phosphonate–acetate dota analogues, kinetic inertness of the cerium(III) complexes is increased with a higher number of phosphonate arms in the ligand, whereas the opposite is true for europium(III) complexes. According to the 1H NMR spectroscopic pseudo‐contact shifts for the Ce–Eu and Tb–Yb series, the solution structures of the complexes reflect the structures of the [Ce(H L )(H2O)]2? and [Yb(H L )]2? anions, respectively, found in the solid state. However, these solution NMR spectroscopic studies showed that there is no unambiguous relation between 31P/1H lanthanide‐induced shift (LIS) values and coordination of water in the complexes; the values rather express a relative position of the central ions between the N4 and O4 planes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号