首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyanuration of 2-naphthaldehyde (1) and 5-methyl-2-furaldehyde (2) yielded the racemic 2-hydroxy-2-(β-naphthyl)ethanenitrile (R,S)-3 and 2-hydroxy-2-(5-methyl-2-furyl)ethanenitrile (R,S)-5, respectively. The same reaction can be completed by using acetone cyanohydrin (4) as a transcyanating agent. The optically active (R)-3 and (S)-5 could be respectively obtained by hydrocyanation of 1 and 2 using (R)-hydroxynitrile lyase (R)-PaHNL [EC 4.1.2.10] from almonds (Prunus amygdalus) as a chiral catalyst. Cyanohydrins 3 and 5 in their racemic and optically active forms undergo a number of transformations which involve either the hydroxyl group or the cyanide function. Moreover, derivatization of 3 and 5 with (S)-Naproxen®chloride (S)-14 gave the respective diastereoisomers. The optical activity of (R)-3 and (S)-5 as well as their derivatives were recorded. The postulated structures for the new products were supported with compatible elementary and spectroscopic (IR, 1H NMR, 13C NMR, MS, and single crystal X-Ray crystallography) analyses. The antimicrobial activity of some selected racemic new products and their respective optically active analogues were also undertaken.  相似文献   

2.
1,3-Dithiolane-containing nitromethylene derivatives, as candidates for screening as neonicotinoid insecticides, were synthesized by reaction of compound (4) with 1,2-ethanedithiol. Compounds 7ag were obtained via Mannich reaction of (E)-1-((1,3-dithiolan-2-yl)methyl)-2-(nitromethylene)imidazolidine (6), primary amines and formaldehyde. The synthesized compounds were identified by 1H NMR, IR spectroscopy and elemental analysis. Preliminary bioassays indicated that most of the compounds had moderate insecticidal activity against Aphis craccivora. The relationship between molecular structure and biological activity is discussed.  相似文献   

3.
Heteroaryl substituted analogs of antirhnoviral (A), was prepared by a convergent approach. 3-Nitrophenyl-5- bromooromethylisoxazoles 5a–b were synthesized by [3+2] cycloaddition of 3-(benzoyloxy)-propyne 2 to in situ generated arylnitrile oxides followed by deprotection of cycloadducts 3a–b and bromination of the resulting alcohols 4a–b. Coupling of 3- nitrophenyl-5-bromooromethylisoxazoles (5a–b) with 4-[5-(2-alkyl-2H-tetrazolyl)]phenols (6a–d) in N-methylpyrrolidinone under mild conditions afforded a new series of 2-alkyl-5-{4-[1-(3-nitrophenyl-5-isoxazolyl)methyloxy]phenylr}-2H-tetrazoles (7a–h) in high yields. The structures of the synthesized compounds were confirmed by their 1H NMR, Mass spectral, and Elemental Analysis data.  相似文献   

4.
A series of 5-phenyl-3-(10H-phenothiazinyl)-Δ2-cyclohexen-1-ones were prepared using conventional and microwave-assisted methods. The condensation between 3-phenyl-1-(10H-phenothiazinyl) prop-2-en-1-one derivatives (3ag) and acetyl acetone yielded 5-phenyl-3-(10H-phenothiazinyl)-Δ2-cyclohexen-1-one derivatives (7ag). The products were characterized by UV, IR, 1H NMR, 13C NMR, 2D-NMR, MS, and elemental analysis. In vitro antifungal activity was carried out by zone of inhibition method against four species, namely Aspergillus niger, Candida albicans, Microsporum gypseum, and Aspergillus flavus. Compounds 7a and 7d showed good antifungal activity with zones of inhibition of 17 and 18 mm, respectively, and comparable with the standard substance, Bavinston, with 20 mm.  相似文献   

5.
A series of new benzo-15-crown-5 derivatives (16) containing formyl and imine groups were prepared. New formyl crown ethers (1 and 2) were prepared by reaction of 4′,5′-bis(bromomethyl)benzo-15-crown-5 with 2-hydroxy-3-methoxybenzaldehyde (o-vanillin) and 2-hydroxy-5-methoxybenzaldehyde in the presence of NaOH. New Schiff bases (36) were synthesized by the condensation of corresponding aldehydes with 1,3-diaminopropane and 1,4-diaminobutane. Sodium and potassium complexes (1a6a and 1b6b) of the crown compounds forming crystalline complexes of 1:1 (Na+:ligand) and 1:2 (K+:ligand) stoichiometries were also synthesized. The structures of the aldehydes 1 and 2, imines 36 and complexes (1a3a and 1b3b) were confirmed on the basis of elemental analyses, IR, 1H- and 13C-NMR, and mass spectroscopy.  相似文献   

6.
A series of six organotin(IV) carboxylates [Me2SnL2] (1), [n-Bu2SnL2] (2), [n-Oct2SnL2] (3), [Me3SnL] (4), n-Bu3SnL (5) and [Ph3SnL] (6), where L = 3-(4-cyanophenyl) acrylic acid have been synthesized and characterized by elemental analysis, FT-IR and NMR (1H, 13C). The complex (4) was also analyzed by single crystal X-ray analysis which showed distorted trigonal bipyramidal geometry with polymeric bridging behavior. The complexes 16 were screened for antimicrobial activities and cytotoxicity. The results showed significant activity with few exceptions. The catalytic activity of complexes was assessed in transesterification reaction of Brassica campestris oil (triglycerides) to produce biodiesel (fatty acid methyl esters). The results showed that triorganotin(IV) complexes exhibited good catalytic activity than their di-analogues.  相似文献   

7.
A series of new N′-3-(1H-imidazol-1-yl)propylcarbamoyl-4-halogenebenzo hydrazonate (3a–b) were obtained by reaction Ethyl 2-((4-halogene phenyl) (ethoxy) methylene) hydrazinecarboxylate (1) and N-(3-aminopropyl)imidazole (2) at 120–140 °C. Compounds (4a–b) were obtained by the reaction compound 1 and N-(3-aminopropyl)imidazole (2) at 160–180 °C. The structures of compounds 3,4 have been inferred through UV–Vis, IR, 1H/13C NMR, mass spectrometry, elemental analyses, and X-ray crystallography. DFT level 6-31G (d) calculations provided structural information. The electronic structure of compound 3a has been studied by DFT level 6-31G (d) calculations using the X-ray data. The results are accordance with X-ray data.  相似文献   

8.
In the present investigation, a series of ferrocene-based Schiff bases 5a?Cm were synthesized by the condensation of various chalcones 3a?Cm with S-benzyl dithiocarbazate in absolute ethanol using catalytic amount of glacial acetic acid, and characterized by element analysis,1H NMR,13C NMR, and IR. The synthesized compounds were screened for their in vitro antimicrobial activity against four bacterias (Staphylococcus aureus ATCC 9144, Bacillus cereus ATCC 11778, Escherichia coli ATCC 25922, and Pseudomonas aeruginosa ATCC 43288) and two fungals (Aspergillus niger ATCC 9092 and Aspergillus fumigatus ATCC 46645) strains. The Schiff bases 5g, 5h, and 5m against Gram-positive bacterial (E. coli and P. aeruginosa) strains was found to be higher than that for the standard drug. They are potential new drugs in antibacterial activity aspects in further days.  相似文献   

9.
New benzo-15-crown-5 derivatives containing nitro, amine and imine groups were prepared. Nitro compound (1) was prepared after the reaction?4′,5′-bis(bromethyl)benzo-15-crown-5 and o-nitrophenol in the presence of NaOH. After reduction process by using hydrazine hydrate and Pd/C amine compound (2) was formed. New crown ether imine compounds (35) were synthesized by the condensation of corresponding crown ether diamine (2) with salicylaldehyde derivatives. Sodium complexes of the crown compounds (1a5a) form crystalline 1:1 (Na+: ligand) complexes with sodium perchlorate. Nickel(II) complexes (3b5b) with 1:1 (Ni2+:ligand) stoichiometries were also been synthesized from the Schiff bases (35). The results indicated that the Schiff base ligands coordinated through the azomethine nitrogen and phenolic oxygen. The extraction ability of compounds (1, 3, 4 and 5) were also evaluated in chloroform by using several alkali and transition metal picrates such as Li+, Na+, K+, Cr3+, Mn2+, Ni2+, Cu2+, Zn2+ and Pb2+.  相似文献   

10.
Modification of [VO(OPri)3] with oximes in different molar ratios, yielded new class of vanadia precursors, [VO{OPri}3?n{L}n] {where, n = 1–3 and LH = C9H16C=NOH (1–3) and (CH3)2C=NOH (46)}.All the products are yellow in colour. (1) and (2) are liquid/viscous liquid, while others are solids. Molecular weight measurements of all these derivatives and the ESI-mass spectral studies of (1), (2), (3) and (5) indicate their monomeric nature. 1H and 13C{1H} NMR spectra suggest that the oximato moieties are monodentate in solution which was further confirmed by the 51V NMR signals, appeared in the region expected for tetra-coordinated oxo-vanadium atoms. On ageing, a disproportionation reaction occurs in (1) and some crystals appeared. Single crystal X-ray diffraction analyses of the crystals obtained from (1) as well as from (3) were found to be the same and indicate the presence of side-on {dihapto η 2-(N, O)} binding modes of the oximato ligands, leading to the formation of seven coordination environment around the vanadium atom. Thermogravimetric curve of (1) exhibits multi-step decomposition with the formation of V2O5 as the final product at ~850 °C. Sol–gel transformation of (3) yielded (a) VO2 sintered at 300 °C and (b) V2O5 at 600 °C. Similarly, sol–gel transformations of (1) and (2) yielded V2O5 (c) and (d) at 600 °C, respectively. Formation of monoclinic phase in (a) and orthorhombic phase in (b), (c) and (d) were confirmed by powder XRD patterns.  相似文献   

11.
Reaction of tetramethoxysilane or tetramethoxygermane with salicylic acid and morpholine (molar ratio 1:3:2) in tetrahydrofuran yielded morpholiniummer-tris[salicylato(2–)-O1,O3]silicate(mer -5) and morpholiniummer-tris[salicylato(2–)-O1,O3]germanate (mer-8), respectively. Treatment of tetramethoxysilane with 5-chlorosalicylic acid and piperidine (molar ratio 1:3:2) in tetrahydrofuran afforded piperidinium mer-tris[5-chlorosalicylato(2–)-O1,O3]silicate–ditetrahydrofuran (mer-6·2THF). Triethylammonium mer-tris[3-methylsalicylato(2–)-O1,O3]silicate (mer-7) was obtained analogously by reaction of tetramethoxysilane with three molar equivalents of 3-methylsalicylic acid and two molar equivalents of triethylamine in dichloromethane/diethyl ether. The racemic compounds mer-5, mer-6· 2THF,mer-7, and mer-8 were characterized by elemental analyses (C, H, N), single-crystal X-ray diffraction, as well as solid-state (29Si) and solution(1H, 13C, 29Si) NMR studies. The structural characterizationwas complemented by computational studies (HF studies, TZVP level) of thefac- and mer-tris[salicylato(2–)-O1,O3]silicatedianion. In addition, the behavior of mer-7 in solution was studied by VT 1HNMR experiments.  相似文献   

12.
In this study, the novel vic-dioxime ligand (3) and its Ni(II), Cu(II), Co(II), Cd(II) and Zn(II) complexes (48) were synthesized for the first time by condensation reactions of N-(4-aminophenyl)aza-15-crown-5 (1) and anti-chlorophenylchloroglyoxime (2). All of these new compounds were characterized by the elemental analysis, Fourier transform infrared, ultraviolet–visible, mass spectrometry, 1H NMR, 13C NMR and magnetic susceptibility measurements. The electrochemical properties of the ligand and its complexes have been investigated by cyclic voltammetry at the glassy carbon electrode in 0.1 M TBATFB in DMSO.  相似文献   

13.
In this study, a new phthalonitrile derivative 3 bearing 1,3-bis[3(dimethylamino)phenoxy]propan-2-ol 1, metal-free phthalocyanine (Pc) 4, metallophthalocyanines (MPcs) 57 and their quaternized derivatives 4a7a were synthesized. Metal-free Pc 4 was prepared by cyclotetramerization of phthalonitrile derivate 3 and MPcs 57 were synthesized by heating 3 with NiCl2, CoCl2 and CuCl2 in n-pentanol in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene, respectively. Quaternization of the dimethylamino functionality produced quaternized octacationic water soluble metal-free, Ni, Co and Cu Pcs which were soluble in water, DMF, DMSO. The aggregation behaviour of these compounds were investigated in different concentrations of chloroform for metal-free, Ni, Co and Cu Pcs. The effect of solvents on absorption spectra were studied in various organic solvents. The novel compounds were characterized using IR, 1H-, 13C NMR, UV–vis and MS spectral data.  相似文献   

14.
This article displays the synthesis of N-(2-tosylato)ethylpiperazine (ii) and 5,11,17,23-tetra-tert-butyl-25,27-bis-(2-piprazinoethyl)-26,28-dihydroxycalix[4]arene (3). Compounds (ii) and 3 were characterized through elemental analysis, FT-IR, 1H NMR and/or 13C NMR studies. The transition metal cations (Hg2+, Co2+, Ni2+, Cu2+, and Cd2+) and dichromate anion were studied by liquid–liquid extraction experiment. The results showed that compound 3 has moderate but selective extraction ability for Hg2+ and dichromate anion. Comparison between extraction properties of compound 3 with previously reported 5,11,17,23-tetra-tert-butyl-25,27-bis(isoniazidylcarbonylmethoxy)-26,28-dihydroxy-calix[4]arene (4) and protonated pyridinium form of 4 (5) is also described.  相似文献   

15.
The transformations of 4-tert-butyl-1,2-benzoquinone (I), 3,5-di-tert-butyl-1,2-benzoquinone (II), and 4-methoxy-5-tert-butyl-1,2-benzoquinone (III) in deaerated cyclohexane solutions under exposure to γ-radiation were studied. It was found by chromatography-mass spectrometry and 1H and 13C NMR spectroscopy that the addition of cyclohexyl radicals at the C=O bond in compounds I–III resulted in monoalkyl ethers, whereas cyclic ketal XXI was also formed in the case of compound II. Moreover, quinone I afforded mixed O-and C-alkylation products, and the adduct of cyclohexyl radicals and quinone II at the C=C bond was the source of dimeric products.  相似文献   

16.
Hexachlorocylotriphosphazene (1) was reacted with 4-hydroxy-3-methoxybenzaldehyde to give hexakis[(4-formyl-2-methoxy)phenoxy]cyclotriphosphazene (2). Hexakis[(4-(hydroxyimino)2-methoxy)phenoxy]cyclotriphosphazene (3) was synthesized by reaction of 2 with hydroxlamine hydrochloride in pyridine. Compound 3 was reacted with benzyl chloride, acetyl chloride, allyl bromide, benzoyl chloride, propanoyl chloride, 4-methoxybenzoyl chloride, 2-chlorobenzoyl chloride, chloroacetyl chloride, methyl iodide, and thiophene-2-carbonyl chloride. From these reactions, full or partially substituted compounds were obtained, usually in high yields. Pure or defined products could not be obtained from reaction of 3 with methacryloyl chloride and O-acetylsalicyloyl chloride. The structures of the compounds were determined by elemental analysis, and IR, 1H, 13C, and 31P NMR spectroscopy. The synthesized compounds were screened for in-vitro antimicrobial activity against two Gram-positive bacteria (Staphylococcus aureus and Enterococcus faecalis), two gram-negative bacteria (Escherichia coli and Klebsiella pneumonia), and fungal strains (Aspergillus niger, and Candida albicans) by the agar well diffusion method. Few compounds had significant activity against both Gram-positive and Gram-negative bacteria. None of the compounds had antifungal activity except compounds 7 and 9, which had moderate activity.  相似文献   

17.
1H, 13C, and 15N NMR chemical shifts have been measured for 2-aminopyridine N-oxide (1), its eleven derivatives (210, 13, 14), and 3-Cl and 3-Br substituted 4-nitropyridine N-oxides (11, 12). δ(15N) of pyridine ring nitrogen in 2-acetylaminopyridine N-oxides are 5.9–11.5 ppm deshielded from those in 2-aminopyridine N-oxides. When amino and acetylamino substituents are in 4-position, δ(15N) of ring nitrogen is 21.3 ppm deshielded in the acetylated derivative. The strong resonance interaction between 2-amino and 5-nitro groups reflects in the decrease of amino nitrogen shielding about 5.3–17.9 ppm. Also, 1H and 13C NMR spectral data are in agreement with 15N NMR results reflected as deshielded amino protons and carbons C-2 and C-5. The pyridine nitrogen chemical shift in all amino- and acetylamino derivatives vary between ?101.2 and ?126.7 ppm, which has been connected with the tautomeric balance in our earlier studies.  相似文献   

18.
Some new 3,5-diaryl-1H-pyrazoles were prepared from aryl methyl ketones via Claisen condensation with aromatic esters and followed by cyclization with hydrazine monohydrate. Their structures were confirmed by IR, 1H NMR spectroscopy, mass spectrometry and elemental analysis. The X-ray structure for 3(5)-(4-tert-butylphenyl)-5(3)-(4-methoxyphenyl)-1H-pyrazole (2b) was presented. The results show that compound 2b exists as tautomers I and II, and its molecules are connected by the N–H···N intermolecular hydrogen bonds to form cyclic dimers consisting of the tautomers I and II.  相似文献   

19.
Thed,l-(1a) andmeso-forms (1b) of α,α'-dihydroxy-α,α'-dimethyladipic acid, dilactone (3), diiminodilactone (4), and lactonolactam (5) were obtained by the reaction of acetonylacetone with KCN and HCl. The transformations of1 to the esters2, dilactone3 to la, and diiminodilactone4 to dilactone3 were studied. It was shown that3 can be readily obtained from la by thermolysis, acid catalysis, and DCC action as well as by acid catalyzed cyclization of2a, while dilactone3 can be obtained from1b and2b in negligible yield only under drastic conditions, obviously, due to the partial epimirization of themeso-forms. The mild thermolysis of1b leads totrans-lactonoacid (6), from which the ester7 has been obtained. The effective acid catalyzed cyclization of amides8 and9 to3, lactamoamide12 to5, and amide14 to model lactone13 was found. The NMR spectra of the products were studied, and a1H NMR test was suggested for identification ofd,l- andmeso-forms1 and2. The stereochemistry of monolactones6, 7, 9, 10a, 10b, 11, and dilactone3 was established. The differences in the chemical behavior of α,α'-dihydroxyglutaric and adipic acids were explained by the significant reduction of the non-bonded interactions of the substituents in the corresponding monolactones during the transfer from 1,3- to 1,4-substituted systems.  相似文献   

20.
Action of guanidine or urea on cyclohexanone-, cyclopentanone-, cycloheptanone-and acetonecyanohydrine3 a?3 d generates very different products: 3 a reacts with guanidine inDMF to yield 1,3-diazaspiro[4.5]decane-2,4-diimine (5 a). Heating the components without solvent affords 7,14-diazadispiro[5.1.5.2]pentadecan-15-one(7)15–17, the guanidine not participating in the reaction; similarly3 b is transformed by guanidine to a pentacyclic dispirocompound (possible formulae19 and20), whereas3 d reacts to give 3,3,5,5-tetramethylpiperazine-2,6-dione(21)19. In 3-pentanone guanidine-cyanide condensates itself to give 2,4-diamino-triazine (22)21, 22. Action of urea on3 a?3 d yields the 4-imino-1,3-diazaspiroalkan-2-ones6 a?6 c and the 4-imino-5,5-dimethylimidazolidin-2-one6 d 6–8 resp. If the reaction of urea and3 d is carried out inDMF, however, 5,5-dimethyl-4-ureido-3-imidazolin-2-one (28) (or the tautomeric carbamoyliminoimidazolidinone27) is produced. The structures of the compounds prepared are proved by NMR-, IR- and mass spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号