首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inversion profile of adiabatic inversion pulses is essential to the accuracy of perfusion measurement with pulsed arterial spin-labeling (ASL). In this paper, the inversion profiles for flowing spins were investigated using a numerical solution of the modified Bloch equations including a term for moving spins. Inversion profiles for spins flowing at a constant or varying velocity were examined for hyperbolic secant (HS) and frequency-offset corrected inversion (FOCI) pulses. Distortions of the inversion profiles were found for both pulses with spins flowing within physiological velocity range. The effects of the distorted profiles on labeling efficiency and labeling accuracy in the application of pulsed ASL perfusion imaging were analyzed. These effects should be taken into account in ASL techniques, in order to obtain robust and accurate perfusion measurements.  相似文献   

2.
The presence of integral membrane proteins induces the formation of distinct domains in the lipid bilayer portion of biological membranes. Qualitative application of both continuous wave (CW) and saturation recovery (SR) electron paramagnetic resonance (EPR) spin-labeling methods allowed discrimination of the bulk, boundary, and trapped lipid domains. A recently developed method, which is based on the CW EPR spectra of phospholipid (PL) and cholesterol (Chol) analog spin labels, allows evaluation of the relative amount of PLs (% of total PLs) in the boundary plus trapped lipid domain and the relative amount of Chol (% of total Chol) in the trapped lipid domain (Raguz et al. Exp Eye Res 140:179–186, 24). Here, a new method is presented that, based on SR EPR spin-labeling, allows quantitative evaluation of the relative amounts of PLs and Chol in the trapped lipid domain of intact membranes. This new method complements the existing one, allowing acquisition of more detailed information about the distribution of lipids between domains in intact membranes. The methodological transition of the SR EPR spin-labeling approach from qualitative to quantitative is demonstrated. The abilities of this method are illustrated for intact cortical and nuclear fiber cell plasma membranes from porcine eye lenses. Statistical analysis (Student’s t test) of the data allowed determination of the separations of mean values above which differences can be treated as statistically significant (P ≤ 0.05) and can be attributed to sources other than preparation/technique.  相似文献   

3.
ObjectiveAlfaxalone has been used increasingly in biomedical research and veterinary medicine of large animals in recent years. However, its effects on the cerebral blood flow (CBF) physiology and intrinsic neuronal activity of anesthetized brains remain poorly understood.MethodsFour healthy adult rhesus monkeys were anesthetized initially with alfaxalone (0.125 mg/kg/min) or ketamine (1.6 mg/kg/min) for 50 min, then administrated with 0.8% isoflurane for 60 min. Heart rates, breathing beats, and blood pressures were continuously monitored. CBF data were collected using pseudo-continuous arterial spin-labeling (pCASL) MRI technique and rsfMRI data were collected using single-shot EPI sequence for each anesthetic.ResultsBoth the heart rates and mean arterial pressure (MAP) remained more stable during alfaxalone infusion than those during ketamine administration. Alfaxalone reduced CBF substantially compared to ketamine anesthesia (grey matter, 65 ± 22 vs. 179 ± 38 ml/100g/min, p<0.001; white matter, 14 ± 7 vs. 26 ± 6 ml/100g/min, p < 0.05); In addition, CBF increase was seen in all selected cortical and subcortical regions of alfaxalone-pretreated monkey brains during isoflurane exposure, very different from the findings in isoflurane-exposed monkeys pretreated with ketamine. Also, alfaxalone showed suppression effects on functional connectivity of the monkey brain similar to ketamine.ConclusionAlfaxalone showed strong suppression effects on CBF of the monkey brain.The residual effect of alfaxalone on CBF of isoflurane-exposed brains was evident and monotonous in all the examined brain regions when used as induction agent for inhalational anesthesia. In particular, alfaxalone showed similar suppression effect on intrinsic neuronal activity of the brain in comparison with ketamine. These findings suggest alfaxalone can be a good alternative to veterinary anesthesia in neuroimaging examination of large animal models. However, its effects on CBF and functional connectivity should be considered.  相似文献   

4.
Pulsed electron-electron double resonance (PELDOR) spectroscopy is a powerful tool for measuring nanometer distances in spin-labeled systems. A common approach is doubly covalent spin-labeling of a macromolecule and measurement of the inter-spin distance, or to use singly-labeled components of a system that forms aggregates or oligomers. This situation has been described as a spin-cluster. The PELDOR signal, however, does not only contain the desired dipolar coupling between the spin-labels of the molecule or cluster under study. In samples of finite concentration the dipolar coupling between the spin-labels of the randomly distributed molecules or spin-clusters also contributes significantly. In homogeneous frozen solutions or lipid vesicle membranes this second contribution can be considered to be an exponential or stretched exponential decay, respectively. In this study, we show that this assumption is not valid in detergent micelles. Spin-labeled fatty acids that are randomly partitioned into different detergent micelles give rise to PELDOR time traces which clearly deviate from stretched exponential decays. The obtained signals can be modeled quantitatively based on the size of the micelles, their aggregation number, the spin-label concentration and the degree of spin-labeling. As a main conclusion a PELDOR signal deviating from a stretched exponential decay does not necessarily prove the observation of specific distance information on the molecule or cluster. These results are important for the interpretation of PELDOR experiments on membrane proteins or lipophilic peptides solubilized in detergent micelles or small vesicles, which often do not show pronounced dipolar oscillations in their time traces.  相似文献   

5.
The neutralization of He+ ions with energies in the range 10-500 eV at an adsorbed xenon layer is examined both by analyzing the energy distribution of electrons ejected from the surface and by use of spin-labeling techniques, specifically the use of electron-spin-polarized He+ ions coupled with measurement of the ejected electron polarization. The data indicate that neutralization proceeds via an Auger process similar to that which occurs at a clean high-work-function metal surface. At the higher ion energies, however, kinetic ejection becomes important and provides an increasing contribution to the total electron yield.  相似文献   

6.
An ultra-stable variable temperature accessory for EPR experiments with biological samples has been designed and tested. The accessory is comprised from a digitally controlled circulator bath that pumps fluid through high-efficiency aluminum radiators attached to an EPR resonator of a commercial X-band EPR spectrometer. Temperature stability of this new accessory after a 15 min re-equilibration is at least +/-0.007 K. For a standard 1-cm-long capillary sample arranged inside an EPR tube filled with silicon oil, the temperature variations do not exceed +/-0.033 K over the sample temperature range from 283 to 333 K. This new accessory has been tested by carrying out a comparative spin-labeling EPR and differential scanning calorimetry (DSC) study of the gel-to-liquid phase transition in multilamellar vesicles (MLV) composed of a synthetic phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC). We demonstrate that the gel-to-liquid phase transition temperatures of MLV DMPC measured by EPR and DSC agree within +/-0.02 K experimental error even though the sample for EPR study was labeled with 1 mol% of 5PC (1-palmitoyl-2-stearoyl-(5-doxyl)-sn-glycero-3 phosphocholine). Cooperative unit number measured by EPR, N=676+/-36, was almost 50% higher than that obtained from DSC (N=458+/-18). These high values of N indicate that (i) the lipid domains should include at least several spin-labeled lipid molecules and (ii) the spin-probe 5PC molecules are not excluded into domains that are different from the bulk lipid phase as was speculated earlier. Overall, our data provide DSC and EPR evidence that in studies of the gel-to-liquid phase transition, the effect of bilayer perturbation by spin-labeled lipids is negligible and therefore thermodynamic parameters of the phase transition can be accurately measured by spin-labeling EPR. This might serve as an indication when spin-labeled molecules with structures similar to those of lipids are introduced at low concentrations, they are easily accommodated by fluid phospholipid bilayers without significant losses of the lipid cooperativity.  相似文献   

7.
Developments of many cardiovascular problems have been shown to have a close relationship with arterial flow conditions.However,current ultrasound/Doppler imaging techniques cannot resolve the complex nature of arterial blood flow.We have recently developed a novel contrast-based echo particle imaging technique(Echo PIV) without angel dependence for non-invasively measuring multi-component flow vectors.This study introduces the Echo PIV principles,system characterization and utility examination to characterize hemodynamics in pipe laminar flow and rotating flow.Echo PIV measurement results show its capability to resolve the complex hemodynamics including proximal flow velocity vectors,and velocity mapping. The Echo PIV method provides an easy,direct and accurate means of quantitatively yet non-invasively characterizing the complex vascular hemodynamics.  相似文献   

8.
Measurement of blood flow by cine phase-contrast MRI is a valuable technique in the study of arterial disease but is time consuming, especially for multi-slice (4D) studies. Compressed sensing is a modern signal processing technique that exploits sparse signal representations to enable sampling at lower than the conventional Nyquist rate. It is emerging as a powerful technique for the acceleration of MRI acquisition. In this study we evaluated the accuracy of phase-contrast carotid blood flow measurement in healthy volunteers using threefold undersampling of kt-space and compressed sensing reconstruction.  相似文献   

9.
This article continues our review of spectroscopic studies of G-protein-coupled receptors. Magnetic resonance methods including electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) provide specific structural and dynamical data for the protein in conjunction with optical methods (vibrational, electronic spectroscopy) as discussed in the accompanying article. An additional advantage is the opportunity to explore the receptor proteins in the natural membrane lipid environment. Solid-state 2H and 13C NMR methods yield information about both the local structure and dynamics of the cofactor bound to the protein and its light-induced changes. Complementary site-directed spin-labeling studies monitor the structural alterations over larger distances and correspondingly longer time scales. A multiscale reaction mechanism describes how local changes of the retinal cofactor unlock the receptor to initiate large-scale conformational changes of rhodopsin. Activation of the G-protein-coupled receptor involves an ensemble of conformational substates within the rhodopsin manifold that characterize the dynamically active receptor.  相似文献   

10.
Accurate depiction of the vessels of the lower leg, foot or hand benefits from suppression of bright MR signal from lipid (such as bone marrow) and long-T1 fluid (such as synovial fluid and edema). Signal independence of blood flow velocities, good arterial/muscle contrast and arterial/venous separation are also desirable. The high SNR, short scan times and flow properties of balanced steady-state free precession (SSFP) make it an excellent candidate for flow-independent angiography. In this work, a new magnetization-prepared 3D SSFP sequence for flow-independent peripheral angiography is presented. The technique combines a number of component techniques (phase-sensitive fat detection, inversion recovery, T2-preparation and square-spiral phase-encode ordering) to achieve high-contrast peripheral angiograms at only a modest scan time penalty over simple 3D SSFP. The technique is described in detail, a parameter optimization performed and preliminary results presented achieving high contrast and 1-mm isotropic resolution in a normal foot.  相似文献   

11.
PURPOSE: To identify regional arterial input functions (AIFs) using factor analysis of dynamic studies (FADS) when quantification of perfusion is performed using model-free arterial spin labelling. MATERIAL AND METHODS: Five healthy volunteers and one patient were examined on a 3-T Philips unit using quantitative STAR labelling of arterial regions (QUASAR). Two sets of images were retrieved, one where the arterial signal had been crushed and another where it was retained. FADS was applied to the arterial signal curves to acquire the AIFs. Perfusion maps were obtained using block-circulant SVD deconvolution and regional AIFs obtained by FADS. In the volunteers, the ASL experiment was repeated within 24 h. The patient was also examined using dynamic susceptibility contrast MRI. RESULTS: In the healthy volunteers, CBF was 64+/-10 ml/[min 100 g] (mean+/-S.D.) in GM and 24+/-4 ml/[min 100 g] in WM, while the mean aBV was 0.94% in GM and 0.25% in WM. DISCUSSION: Good CBF image quality and reasonable quantitative CBF values were obtained using the combined QUASAR/FADS technique. We conclude that FADS may be a useful supplement in the evaluation of ASL data using QUASAR.  相似文献   

12.
Magnetic resonance elastography (MRE) is a noninvasive phase-contrast technique for estimating the mechanical properties of tissues by imaging propagating mechanical waves within the tissue. In this study, we hypothesize that changes in arterial wall stiffness, experimentally induced by formalin fixation, can be measured using MRE in ex vivo porcine aortas. In agreement with our hypothesis, the significant stiffness increase after sample fixation was clearly demonstrated by MRE and confirmed by mechanical testing. The results indicate that MRE can be used to examine the stiffness changes of the aorta. This study has provided evidence of the effectiveness of using MRE to directly assess the stiffness change in aortic wall. The results offer motivation to pursue MRE as a noninvasive method for the evaluation of arterial wall mechanical properties.  相似文献   

13.
超声粒子图像测速技术及应用   总被引:1,自引:0,他引:1  
心血管疾病的产生与动脉血流的流动状况密切相关。然而,目前普遍应用的超声多普勒成像技术不能精确测量复杂血流流场信息。本文提出了一种基于超声造影微泡的超声全流场粒子图像测速技术,能够获得多维流速速度信息,且不依赖于声束与速度向量之间的夹角。本文首先着重阐述了超声全流场粒子测速技术的基本原理以及系统组成,并对直管流和旋转流场流体动力学特性进行了实验测试研究,实验结果表明本技术能够测量全流场速度,并可作为表征复杂血流流场的有力手段。   相似文献   

14.
准连续性动脉自旋标记技术(pCASL)是一种新兴的动脉自旋标记脑灌注成像技术(ASL):一方面,它克服了连续性动脉自旋标记技术(CASL)需要独立发射线圈的硬件限制;另一方面,也避免了脉冲式动脉自旋标记技术(PASL)带来的标记效率低的影响.为了在 1.5 T 磁共振系统上开发一款可稳定应用于临床扫描的 pCASL 序列;并使用该序列准确获得反
应灌注功能的局部脑血流量值(Regional Cerebral Blood Flow, rCBF).该文利用水模测试pCASL 序列,验证了标记部分的标记性能并通过人体实验,优化了协议中标记位置中心到成像层面中心的距离和标记部分结束点到成像脉冲开始前的等待时间这两项参数.基于优化了参数的 pCASL 协议,扫描 12 组正常志愿者,观测灌注信号分布情况,并对特定灰质区域定量计算,对比不同个体该区域的 rCBF 值.通过人体实验,经验性地确定了延迟时间为 1 200 ms、标记距离为 70 mm 时灌注图像的信噪比达到最优.将两项优化后的参数存入协议中,并使用协议扫描,共获取 12 组结果,其中的 10 组都表明灌注信号稳定均匀,并且灰质区域的 CBF 值同经验结果一致.该工作在1.5 T 的磁共振系统上成功实现了 pCASL序列,经优化参数后的协议扫描,可以获得准确稳定的脑部灌注信号.
  相似文献   

15.
Site-directed spin-labeling electron spin resonance (SDSL-ESR) is a promising tool for membrane protein structure determination. Here we propose a novel way to translate the local structural constraints gained by SDSL-ESR data into a low-resolution structure of a protein by simulating the restrictions of the local conformational spaces of the spin label attached at different protein sites along the primary structure of the membrane-embedded protein. We test the sensitivity of this approach for membrane-embedded M13 major coat protein decorated with a limited number of strategically placed spin labels employing high-throughput site-directed mutagenesis. We find a reasonably good agreement of the simulated and the experimental data taking a protein conformation close to the one determined by fluorescence resonance energy transfer analysis [P.V. Nazarov, R.B.M. Koehorst, W.L. Vos, V.V. Apanasovich, M.A. Hemminga, FRET study of membrane proteins: determination of the tilt and orientation of the N-terminal domain of M13 major coat protein, Biophys. J. 92 (2007) 1296–1305].  相似文献   

16.
This study was to validate the feasibility of using a magnetic resonance imaging-guidewire (MRIG) for intravascular 3.0 T MR imaging of deep-seated arterial walls of large animals. The functionality of a 0.032-in. MRIG was evaluated and the signal-to-noise ratio (SNR) was calculated. Then, MRI of ten iliofemoral arteries of six pigs was acquired by MRIG and surface coil. The difference in the SNRs of the arterial walls between different coils was compared. Histology examined the potential thermal injuries of the imaged vessels. The MRIG functioned with the 3.0 T MR scanner. The average SNR of the arterial walls was significantly higher with the MRIG than with the surface coils (76.22 ± 34.76 vs. 12.63 ± 4.25, P < 0.01). Histology showed no evidence of thermal injuries at the vessel walls. This study validated the feasibility of generating intravascular 3.0 T MRI of deep-seated arterial walls in large animals, which should facilitate the translation of this technique from 1.5 to 3.0 T MR scanner.  相似文献   

17.
This work describes the use of custom-built gradients to enhance skeletal muscle perfusion measurements acquired with a previously described arterial spin labeling technique known as FAWSETS (flow-driven arterial water stimulation with elimination of tissue signal). Custom-built gradients provide active control of the static magnetic field gradient on which FAWSETS relies for labeling. This allows selective, 180 degrees modulations of the phase of the perfusion component of the signal. Phase cycling can then be implemented to eliminate all extraneous components leaving a signal that exclusively reflects capillary-level perfusion. Gradient-enhancement substantially reduces acquisition time and eliminates the need to acquire an ischemic signal to quantify perfusion. This removes critical obstacles to application of FAWSETS in organs other than skeletal muscle and makes the measurements more desirable for clinical environments. The basic physical principles of gradient-enhancement are demonstrated in flow phantom experiments and in vivo utility is demonstrated in rat hind limb during stimulated exercise.  相似文献   

18.

Background  

Images of perfusion estimates obtained with the continuous arterial spin labelling technique are characterized by variation between single acquisitions. Little is known about the spatial determinants of this variation during the acquisition process and their impact on voxel-by-voxel estimates of effects.  相似文献   

19.
Pulmonary perfusion is an important parameter in the evaluation of lung diseases such as pulmonary embolism. A noninvasive MR perfusion imaging technique of the lung is presented in which magnetically labeled blood water is used as an endogenous, freely diffusible tracer. The perfusion imaging technique is an arterial spin tagging method called Flow sensitive Alternating Inversion Recovery with an Extra Radiofrequency pulse (FAIRER). Seven healthy human volunteers were studied. High-resolution perfusion-weighted images with negligible artifacts were acquired within a single breathhold. Different patterns of signal enhancement were observed between the pulmonary vessels and parenchyma, which persists up to TI = 1400 ms. The T1s of blood and lung parenchyma were determined to be 1.46s and 1.35 s, respectively.  相似文献   

20.
The fast Fourier flow technique offers a convenient way for extremely exact flow measurements. In combination with ECG gating, arterial flow can be studied. The total acquisition time for a single measurement is about 10 s, an ECG-gated cine sequence can be acquired in about 4 min. Fast Fourier flow can, therefore, be easily combined with a conventional imaging examination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号