首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The diffusion radius of the 1S muonic hydrogen atoms in gaseous H2 targets with various deuterium admixtures has been determined for temperatures T=30 and 300 K. The Monte Carlo calculations have been performed using the partial differential cross sections for pμ and dμ atom scattering from the molecules H2, HD and D2. These cross sections include hyperfine transitions in the muonic atoms, the muon exchange between the nuclei p and d, and rotational-vibrational transitions in the target molecules. The Monte Carlo results have been used for preparing the time-projection chamber for the high-precision measurement of the nuclear μ- capture in the ground-state pμ atom, which is now underway at the Paul Scherrer Institute.  相似文献   

2.
V. S. Kulhar 《Pramana》2004,63(3):543-551
The muonium/muonic hydrogen atom formation in μ±−H collisions is investigated, using a two-state approximation in a time dependent formalism. It is found that muonium cross-section results are similar to the cross-section results obtained for positronium formation in e+-H collision. Muonic hydrogen atom formation cross-sections in μ--H collision are found to be significant in a narrow range of energy (5 eV–25 eV).  相似文献   

3.
The results of first calculations of the differential cross sections for muonic hydrogen scattering on hydrogen molecules are presented. They are functions of the initial and final kinetic energy of the system and the scattering angle. These calculations are based on the respective set of cross sections for muonic hydrogen scattering on hydrogen nuclei, obtained within the framework of the adiabatic method. The Fermi pseudopotential method is used to estimate the molecular binding effects. The influence of electrons on the cross sections under consideration is described in terms of the effective screening potential. Rotational and vibrational transitions are taken into account. The calculated molecular differential cross sections show a strong angular dependence. This effect is very significant for the electronic contributions to the cross sections, e.g. for collision energies above approximately 0.1 eV only the cross sections of small scattering angles are influenced considerably by the screening. Since these differential cross sections give detailed information about the final energies and complicated angular distributions of the scattered muonic atoms they are the proper basis for calculations concerning the deceleration of muonic hydrogen atoms in molecular hydrogen targets and for Monte Carlo simulations of different experiments in muonic physics.  相似文献   

4.
Muonic hydrogen isotopes (μ p, μ d, and μt) are simple quantum mechanical systems ideally suited for studies of numerous fundamental phenomena in electroweak and strong interactions as well as in applied areas such as muon chemistry or muon catalyzed fusion. Emission of muonic hydrogen isotopes into vacuum helps to overcome the limitations which are normally imposed on conventional investigations with gaseous and liquid targets. A proof of principle experiment for this new technique was performed at TRIUMF last year. Negative muons with 30 MeV/c momentum were stopped in a thin film of solid hydrogen and produced very low energy μd in vacuum. The distribution center of the normal velocity components of emitted μd atoms was measured to be ∼1 cm/μs. The yield of μd in vacuum is an increasing function of H2 film thickness δ up to a value of δ≥1 mm.  相似文献   

5.
The current discrepancy of theory and experiment observed recently in muonic hydrogen necessitates a reinvestigation of all corrections to contribute to the Lamb shift in muonic hydrogen (μH), muonic deuterium (μD), the muonic \hbox{3He{}^3{\rm He}} 3 He ion (denoted here as μ 3He+), as well as in the muonic \hbox{4He{}^4{\rm He}} 4 He ion (μ 4He+). Here, we choose a semi-analytic approach and evaluate a number of higher-order corrections to vacuum polarization (VP) semi-analytically, while remaining integrals over the spectral density of VP are performed numerically. We obtain semi-analytic results for the second-order correction, and for the relativistic correction to VP. The self-energy correction to VP is calculated, including the perturbations of the Bethe logarithms by vacuum polarization. Subleading logarithmic terms in the radiative-recoil correction to the 2S–2P Lamb shift of order α()5 μ 3ln() / (m μ m N ) are also obtained. All calculations are nonperturbative in the mass ratio of orbiting particle and nucleus.  相似文献   

6.
The results of calculations of the total cross sections of spin-flip processes in low energy muonic hydrogen scattering on hydrogen molecules are presented. These calculations are based on the respective set of cross sections for muonic hydrogen scattering on hydrogen nuclei, obtained within the framework of the multichannel adiabatic method. All combinations of the three hydrogen isotopes are considered. Molecular binding effects are described in terms of the Fermi pseudopotential method. Electron screening effects are calculated in the distorted wave Born approximation. Rotational and vibrational transitions of the molecules, due to collisions with muonic hydrogen atoms, are taken into account. The molecular and electron screening corrections do not exceed a few tens per cent for lowest collision energies.  相似文献   

7.
The emission of muonic tritium atoms from a thin film of hydrogen isotopes into vacuum was observed. The time and position of the muon decays were measured by tracking the decay electron trajectory. The observations are useful both for testing the theoretical cross sections for muonic atomic interactions, and producing an atomic beam of slow μ-t with a controllable energy. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
The contribution of the root mean square (RMS) proton charge radius to the Lamb shift (2S–2P energy difference) in muonic hydrogen (μp) amounts to 2%. Apart from the uncertainty on this charge radius, theory predicts the Lamb shift with a precision on the ppm level. We are going to measure ΔE (2 S1/2(F=1)–2 P3/2(F=2)) in a laser resonance experiment to a precision of 30 ppm (i.e., 10% of the natural linewidth) and to deduce the RMS proton charge radius with 10−3 relative accuracy, 20 times more precise than presently known. The most important requirement for the feasibility of such an experiment, namely the availability of a sufficient amount of long lived metastable μp atoms in the 2S state, has been investigated in a recent experiment at PSI. Our analysis shows that in the order of one percent of all muons stopped in low pressure hydrogen gas form a long lived μp(2S) with a lifetime of the order of 1 μs. The technical realization of our experiment involves a new high intensity low energy muon beam, an efficient low energy muon entrance detector, a randomly triggered 3 stage laser system providing the 0.5 mJ, 7 ns laser pulses at 6.02 μm wavelength, and a combination of a xenon gas proportional scintillation chamber (GPSC) and a microstrip gas chamber (MSGC) with a CsI coated surface to detect the 2 keV X rays from theμp(2P → 1S) transition. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
Coulomb deexcitation differential cross sections of excited muonic hydrogen in collisions with the hydrogen atom are studied for the first time. In the fully quantum-mechanical close-coupling approach, both the differential cross sections for the nln′l′ transitions and l-averaged differential cross sections have been calculated for the initial exotic atom states with n = 2–6 at kinetic energies of E cm = 0.01–15 eV and for scattering angles of ϑcm = 0°–180°. The vacuum polarization shifts of the ns states are taken into account. The differential cross sections of the elastic and Stark scattering obtained in the same approach are also presented. The main features of the calculated differential cross sections are discussed, and a strong anisotropy of Coulomb deexcitation cross sections is predicted. The text was submitted by the authors in English.  相似文献   

10.
Kinetic energy distributions of muonic hydrogen atoms μp(1S) have been obtained by means of a time-of-flight technique for hydrogen gas pressures between 4 and 64 hPa. A high energy component of ∼900 eV observed in the data is interpreted as the signature of long-lived μp(2S) atoms, which are quenched in a non-radiative process leading to the observed high energy: the collision of a thermalized μp(2S) atom with a hydrogen molecule H2 results in the resonant formation of a {[(ppμ)+]*pee}* molecule. Then the (ppμ)+ complex undergoes Coulomb de-excitation and the ∼1.9 keV excitation energy is shared between a μp(1S) atom and one proton. The preliminary analysis of the time spectra gives a long-lived μp(2S) population of ∼1% of all stopped muons, and a quenching rate of ∼4⋅1011 s−1. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
To investigate the energy dependence of muon transfer to oxygen, we performed measurements in gaseous mixtures of hydrogen and oxygen. The time distributions of the muonic oxygen X-rays showed the same structure as the one observed earlier in H2+SO2 mixtures. In the delayed part of these distributions, one can distinguish a short-time and a long-time component. From the latter, we deduced the transfer rates from thermalized muonic protium, respectively deuterium, to oxygen. The short-time component can be interpreted as being due to muon transfer from epithermal muonic hydrogen atoms. The time parameters are characteristic for the deceleration process as well as for energy-dependent transfer rates. With results of recent research on the formation and the thermalization of muonic hydrogen, we performed Monte Carlo simulations in order to test the hypothesis of an energy-dependent transfer rate.  相似文献   

12.
The de-excitation processes (J=1)→ (J=0) in muonic molecular ions (ppμ)+ and (3He)+ are studied. It is shown that the rate of such transitions substantially depends on the chain of ion-molecular reactions initiated by positively charged muonic ions. The probabilities of ortho-para transition in the [(ppμ)+H2] and [(ppμ)+e] complexes formed as a result of chemical reactions in the pure hydrogen were estimated. Taking into account the ion-molecular processes in D2 + He mixtures, the evaluation of the observed rate λf of nuclear fusion in the 3He muonic molecules was performed. The expected yield of fusion reactions per muon at the mixture density φ=0.1 and concentration C He =0.05 was obtained to be equal to . This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
The thermalization of pµ atoms in protium and dµ atoms in deuterium is considered. Monte Carlo calculations are performed for gaseous (300 K) and solid (3 K) protium and deuterium targets. Complete sets of the total and differential cross sections for the scattering of pµ on protium targets and dµ on deuterium targets are used as an input to the Monte Carlo simulations. At 300 K, muonic atom scattering from single molecules of H2 and D2 is considered. In the case of solid hydrogen the correlation effects from all molecules of the sample are taken into account. In particular, the Bragg and phonon scattering cross sections are calculated. The spin states and average energy of the muonic atoms are shown as functions of time. It is shown that at energies below about 0.01 eV the solid-state effects influence strongly the calculated cross sections, and therefore the deceleration processes in the solids are much slower than in the gaseous targets. It is shown that the neutron spectrum due to ddµ formation and subsequent dd fusion is significantly affected by slow dµ thermalization in solid deuterium.  相似文献   

14.
Czaplinski  W.  Gula  A.  Kravtsov  A. V.  Mikhailov  A. I.  Popov  N. 《Hyperfine Interactions》1996,101(1):151-154
Transport cross sections for scattering of excited muonic hydrogen on hydrogen are calculated in the quasi-classic approximation in the energy range 0.01–50 eV.  相似文献   

15.
16.
The muonic hydrogen atom in the 2s state provides the possibility of achieving high precision laser spectroscopy experiments from which a high precision value of the proton radius can be deduced. This will ultimately allow an increased precision in the test of QED in bound systems. Important progress has been made in recent years in the ability to stop muons in a low pressure gas target and in the understanding of the 2s-metastability in muonic hydrogen. As a consequence the 2s–2p laser spectroscopy experiment is now feasible and we present here the basic experimental concept considered by our collaboration. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
The TRIUMF E742 experiment has measured the energy dependence of the scattering cross-sections of muonic deuterium and tritium on hydrogen molecules for collisions in the energy range 0.1–45 eV. The experimental setup permits the creation of muonic atom (μd or μt) beams. The multilayered target system gives the possibility to choose the type of interactions to study and to isolate a particular interaction. The scattering of μd or μt beams on H2 is analyzed via the muon transfer reaction to neon. The time-of-flight method is used to measure the scattering cross section as a function of the energy of the muonic atom beam. The results are compared, using Monte Carlo simulations, with theoretical calculations which have been recently performed with high accuracy. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
The contributions to the Lamb shift in muonic hydrogen from hadronic vacuum polarization and from the correction associated with electron vacuum polarization and with the proton polarizability are calculated by using present-day experimental data on the cross section for e + e annihilation into hadrons and on structure functions for deep-inelastic ep scattering. The numerical value of the total contribution to the (2P-2S) shift in muonic hydrogen is found to be 10.95 μeV. __________ Translated from Yadernaya Fizika, Vol. 64, No. 7, 2001, pp. 1358–1363. Original Russian Text Copyright ? 2001 by Martynenko, Faustov.  相似文献   

19.
A technique of neutral muonic atom beams is proposed in the TRIUMF E742 experiment for measuring the scattering cross sections of muonic hydrogen isotopes in solid hydrogen. We present the results of Monte Carlo modeling of pµ and dµ atoms transport under the conditions of this experiment, taking into account the main physical as well as the geometrical aspects. The optimization of set-up parameters is performed in order to choose the most sensitive experimental conditions.  相似文献   

20.
The QCMC scheme created earlier for cascade calculations in heavy hadronic atoms of hydrogen isotopes has been modified and applied to the study of cascade processes in the μp muonic hydrogen atoms. The distribution of μp atoms over kinetic energies has been obtained and the yields of K-series X-rays per one stopped muon have been calculated. Comparison with experimental data indicated directly that for muonic and pionic atoms new types of non-radiative transitions are essential, while they are negligible for heavy (kaonic, antiprotonic, etc.) atoms. These processes have been considered and their probabilities have been estimated. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号