首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Estimation of the L-Curve via Lanczos Bidiagonalization   总被引:6,自引:0,他引:6  
The L-curve criterion is often applied to determine a suitable value of the regularization parameter when solving ill-conditioned linear systems of equations with a right-hand side contaminated by errors of unknown norm. However, the computation of the L-curve is quite costly for large problems; the determination of a point on the L-curve requires that both the norm of the regularized approximate solution and the norm of the corresponding residual vector be available. Therefore, usually only a few points on the L-curve are computed and these values, rather than the L-curve, are used to determine a value of the regularization parameter. We propose a new approach to determine a value of the regularization parameter based on computing an L-ribbon that contains the L-curve in its interior. An L-ribbon can be computed fairly inexpensively by partial Lanczos bidiagonalization of the matrix of the given linear system of equations. A suitable value of the regularization parameter is then determined from the L-ribbon, and we show that an associated approximate solution of the linear system can be computed with little additional work.  相似文献   

2.
We present a new method for regularization of ill-conditioned problems, such as those that arise in image restoration or mathematical processing of medical data. The method extends the traditional trust-region subproblem, TRS, approach that makes use of the L-curve maximum curvature criterion, a strategy recently proposed to find a good regularization parameter. We apply a parameterized trust region approach to estimate the region of maximum curvature of the L-curve and find the regularized solution. This exploits the close connections between various parameters used to solve TRS. A MATLAB code for the algorithm is tested and a comparison to the conjugate gradient least squares, CGLS, approach is given and analysed.  相似文献   

3.
The L-curve is a popular aid for determining a suitable value of the regularization parameter when solving ill-conditioned linear systems of equations with a right-hand side vector, which is contaminated by errors of unknown size. However, for large problems, the computation of the L-curve can be quite expensive, because the determination of a point on the L-curve requires that both the norm of the regularized approximate solution and the norm of the corresponding residual vector be available. Recently, an approximation of the L-curve, referred to as the L-ribbon, was introduced to address this difficulty. The present paper discusses how to organize the computation of the L-ribbon when the matrix of the linear system of equations has many more columns than rows. Numerical examples include an application to computerized tomography.  相似文献   

4.
L-曲线估计确定正则参数的双网格迭代法   总被引:1,自引:0,他引:1  
本文考虑对不适定问题离散化得到的大规模不适定线性方程组进行Tiknonov正则化,然后用双网格迭代法求解得到的Tikhonov正则化方程组,并用L-曲线估计法来确定正则参数.试验问题的数值结果表明双网格迭代法求解正则化后的对称正定线性方程组效果很好,且L-曲线估计法确定正则参数计算量很小.  相似文献   

5.
In this paper we introduce a new variant of L-curve to estimate the Tikhonov regularization parameter for the regularization of discrete ill-posed problems. This method uses the solution norm versus the regularization parameter. The numerical efficiency of this new method is also discussed by considering some test problems.  相似文献   

6.
Electrical impedance tomography (EIT), as an inverse problem, aims to calculate the internal conductivity distribution at the interior of an object from current-voltage measurements on its boundary. Many inverse problems are ill-posed, since the measurement data are limited and imperfect. To overcome ill-posedness in EIT, two main types of regularization techniques are widely used. One is categorized as the projection methods, such as truncated singular value decomposition (SVD or TSVD). The other categorized as penalty methods, such as Tikhonov regularization, and total variation methods. For both of these methods, a good regularization parameter should yield a fair balance between the perturbation error and regularized solution. In this paper a new method combining the least absolute shrinkage and selection operator (LASSO) and the basis pursuit denoising (BPDN) is introduced for EIT. For choosing the optimum regularization we use the L1-curve (Pareto frontier curve) which is similar to the L-curve used in optimising L2-norm problems. In the L1-curve we use the L1-norm of the solution instead of the L2 norm. The results are compared with the TSVD regularization method where the best regularization parameters are selected by observing the Picard condition and minimizing generalized cross validation (GCV) function. We show that this method yields a good regularization parameter corresponding to a regularized solution. Also, in situations where little is known about the noise level σ, it is also useful to visualize the L1-curve in order to understand the trade-offs between the norms of the residual and the solution. This method gives us a means to control the sparsity and filtering of the ill-posed EIT problem. Tracing this curve for the optimum solution can decrease the number of iterations by three times in comparison with using LASSO or BPDN separately.  相似文献   

7.
Abstract

We propose a new way to iteratively solve large scale ill-posed problems by exploiting the relation between Tikhonov regularization and multiobjective optimization to obtain, iteratively, approximations to the Tikhonov L-curve and its corner. Monitoring the change of the approximate L-curves allows us to adjust the regularization parameter adaptively during a preconditioned conjugate gradient iteration, so that the desired solution can be reconstructed with a low number of iterations. We apply the technique to an idealized image reconstruction problem in positron emission tomography.  相似文献   

8.
In this paper, we consider an inverse problem of heat equation with Robin boundary condition for identifying heat transfer coefficient. Combining the method of fundamental solutions with discrepancy principle for the choice of the locations for source points, we give a method for solving the reconstruction problem. Since the resultant matrix is severe ill-conditioning, Tikhonov regularization with L-curve method is employed. Some numerical examples are given for verifying the efficiency and accuracy of the presented method.  相似文献   

9.
Kirsch’s factorization method is a fast inversion technique for visualizing the profile of a scatterer from measurements of the far-field pattern. We present a Tikhonov parameter choice approach based on a maximum product criterion (MPC) which provides a regularization parameter located in the concave part of the L-curve on a log–log scale. The performance of the method is evaluated by comparing our reconstructions with those obtained via the L-curve, Morozov’s discrepancy principle and the SVD-tail. Numerical results that illustrate the effectiveness of the MPC in reconstruction problems involving both simulated and real data are reported and analyzed.  相似文献   

10.
This paper discusses an application of partial tensor Golub–Kahan bidiagonalization to the solution of large-scale linear discrete ill-posed problems based on the t-product formalism for third-order tensors proposed by Kilmer and Martin (M. E. Kilmer and C. D. Martin, Factorization strategies for third order tensors, Linear Algebra Appl., 435 (2011), pp. 641-658). The solution methods presented first reduce a given (large-scale) problem to a problem of small size by application of a few steps of tensor Golub–Kahan bidiagonalization and then regularize the reduced problem by Tikhonov's method. The regularization operator is a third-order tensor, and the data may be represented by a matrix, that is, a tensor slice, or by a general third-order tensor. A regularization parameter is determined by the discrepancy principle. This results in fully automatic solution methods that neither require a user to choose the number of bidiagonalization steps nor the regularization parameter. The methods presented extend available methods for the solution for linear discrete ill-posed problems defined by a matrix operator to linear discrete ill-posed problems defined by a third-order tensor operator. An interlacing property of singular tubes for third-order tensors is shown and applied. Several algorithms are presented. Computed examples illustrate the advantage of the tensor t-product approach, in comparison with solution methods that are based on matricization of the tensor equation.  相似文献   

11.
The Cauchy problem for the Schrödinger equation with an operator degenerating on a half-line and a family of regularized Cauchy problems with uniformly elliptic operators, whose solutions approximate the solution to the degenerate problem, are considered. A set-valued mapping is investigated that takes a bounded operator to a set of partial limits of values of its quadratic form on solutions of the regularized problems when the regularization parameter tends to zero. The dynamics of quantum states are determined by applying an averaging procedure to the set-valued mapping.  相似文献   

12.
We describe regularizing iterative methods for the solution of large ill-conditioned linear systems of equations that arise from the discretization of linear ill-posed problems. The regularization is specified by a filter function of Gaussian type. A parameter determines the amount of regularization applied. The iterative methods are based on a truncated Lanczos decomposition and the filter function is approximated by a linear combination of Lanczos polynomials. A suitable value of the regularization parameter is determined by an L-curve criterion. Computed examples that illustrate the performance of the methods are presented.  相似文献   

13.
An adaptive pruning algorithm for the discrete L-curve criterion   总被引:1,自引:0,他引:1  
We describe a robust and adaptive implementation of the L-curve criterion. The algorithm locates the corner of a discrete L-curve which is a log–log plot of corresponding residual norms and solution norms of regularized solutions from a method with a discrete regularization parameter (such as truncated SVD or regularizing CG iterations). Our algorithm needs no predefined parameters, and in order to capture the global features of the curve in an adaptive fashion, we use a sequence of pruned L-curves that correspond to considering the curves at different scales. We compare our new algorithm to existing algorithms and demonstrate its robustness by numerical examples.  相似文献   

14.
The semidefinite matrix completion(SMC) problem is to recover a low-rank positive semidefinite matrix from a small subset of its entries. It is well known but NP-hard in general. We first show that under some cases, SMC problem and S1/2relaxation model share a unique solution. Then we prove that the global optimal solutions of S1/2regularization model are fixed points of a symmetric matrix half thresholding operator. We give an iterative scheme for solving S1/2regularization model and state convergence analysis of the iterative sequence.Through the optimal regularization parameter setting together with truncation techniques, we develop an HTE algorithm for S1/2regularization model, and numerical experiments confirm the efficiency and robustness of the proposed algorithm.  相似文献   

15.
Iterative regularization multigrid methods have been successfully applied to signal/image deblurring problems. When zero-Dirichlet boundary conditions are imposed the deblurring matrix has a Toeplitz structure and it is potentially full. A crucial task of a multilevel strategy is to preserve the Toeplitz structure at the coarse levels which can be exploited to obtain fast computations. The smoother has to be an iterative regularization method. The grid transfer operator should preserve the regularization property of the smoother. This paper improves the iterative multigrid method proposed in [11] introducing a wavelet soft-thresholding denoising post-smoother. Such post-smoother avoids the noise amplification that is the cause of the semi-convergence of iterative regularization methods and reduces ringing effects. The resulting iterative multigrid regularization method stabilizes the iterations so that the imprecise (over) estimate of the stopping iteration does not have a deleterious effect on the computed solution. Numerical examples of signal and image deblurring problems confirm the effectiveness of the proposed method.  相似文献   

16.
17.
针对反问题中出现的第一类算子方程Au=f,其中A是实Hilbert空间H上的一个无界线性算子利用动力系统方法和正则化方法,求解上述问题的正则化问题的解:u'(t)=-A~*(Au(t)-f)利用线性算子半群理论可以得到上述正则化问题的解的半群表示,并证明了当t→∞时,所得的正则化解收敛于原问题的解.  相似文献   

18.
We develop a regularization for binary collisions in some restricted 3-body problems moving in planar one-dimensional spaces with constant curvature. The main characteristic of the regularization is that it preserves the Hamiltonian structure of the equations and it regularizes all the binary collisions with just one transformation. We apply this global symplectic regularization to the 2-body problem on the unit circle and we show the global dynamics. Also, we tackle the restricted 3-body problem with one fixed center in the unit circle and we give the global dynamics for the case when it has two fixed centers.  相似文献   

19.
研究了正则化方法中正则参数的求解问题,提出了利用微分进化算法获取正则参数.微分进化算法属于全局最优化算法,具有鲁棒性强、收敛速度快、计算精度高的优点.把正则参数的求解问题转化为非线性优化问题,通过保持在解空间不同区域中各个点的搜索,以最大的概率找到问题的全局最优解,同时还利用数值模拟将此方法与广义交叉原理、L-曲线准则、逆最优准则等进行了对比,数值模拟结果表明该方法具有一定的可行性和有效性.  相似文献   

20.
The standard nearest correlation matrix can be efficiently computed by exploiting a recent development of Newton’s method (Qi and Sun in SIAM J. Matrix Anal. Appl. 28:360–385, 2006). Two key mathematical properties, that ensure the efficiency of the method, are the strong semismoothness of the projection operator onto the positive semidefinite cone and constraint nondegeneracy at every feasible point. In the case where a simple upper bound is enforced in the nearest correlation matrix in order to improve its condition number, it is shown, among other things, that constraint nondegeneracy does not always hold, meaning Newton’s method may lose its quadratic convergence. Despite this, the numerical results show that Newton’s method is still extremely efficient even for large scale problems. Through regularization, the developed method is applied to semidefinite programming problems with simple bounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号