首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
 An electrochemical study of the doxazosin oxidative process at carbon paste electrodes using different voltammetric techniques has been carried out. The process is irreversible and controlled by adsorption, giving rise to an oxidation wave around 1.0 V in citric acid-citrate buffer (pH 3.0). A mechanism based on the oxidation of the amine group is postulated. Two methods based on adsorptive stripping (AdS) of doxazosin at the C8-modified carbon paste electrode (C8-MCPE), before its voltammetric determination, are studied, using differential pulse voltammetry (DPV) and square wave voltammetry (SWV) as redissolution techniques. By means of AdS-DPV and C8-MCPE, doxazosin can be determined over the 1.0 × 10−9 to 3.0 × 10−8 mol L−1 range with a variation coefficient of 2.2% (2.0 × 10−8 mol L−1) and a limit of detection of 7.4 ×10−10 mol L−1. If AdS-SWV is used, a linear range from 1.0 × 10−9 to 4.0 × 10−8 mol L−1 is obtained, the variation coefficient being 2.8% (2.0 × 10−8 mol L−1, and the limit of detection reached 7.7 × 10−10 mol L−1. The AdS-DPV procedure was applied to the determination of doxazosin in urine and formulations. Received March 13, 1999. Revision December 23, 1999.  相似文献   

2.
The electrochemical behavior of ceftriaxone was investigated on a carbon-nanotube-modified glassy carbon (GC-CNT) electrode in a phosphate buffer solution, pH = 7.40, and the results were compared with those obtained using the unmodified one [glassy carbon (GC) electrode]. During oxidation of ceftriaxone, an irreversible anodic peak appeared, using both modified and unmodified electrodes. Cyclic voltammetric studies indicated that the oxidation process is irreversible and diffusion-controlled. The number of electrons exchanged in the electrooxidation process was obtained, and the data indicated that ceftriaxone is oxidized via a one-electron step. The results revealed that carbon nanotube promotes the rate of oxidation by increasing the peak current. In addition, ceftriaxone was oxidized at lower potentials, which thermodynamically is more favorable. These results were confirmed by impedance measurements. The electron-transfer coefficients and heterogeneous electron-transfer rate constants for ceftriaxone were reported using both the GC and GC-CNT electrodes. Furthermore, the diffusion coefficient of ceftriaxone was found to be 2.74 × 10−6 cm2 s−1. Binding of ceftriaxone to human serum albumin forms a kind of electroreactive species. The percentage of interaction of ceftriaxone with protein was also addressed. A sensitive, simple, and time-saving differential-pulse voltammetric procedure was developed for the analysis of ceftriaxone, using the GC-CNT electrode. Ceftriaxone can be determined with a detection limit of 4.03 × 10−6 M with the proposed method.  相似文献   

3.
《Analytical letters》2012,45(6):976-990
The electrochemical oxidation of riluzole was investigated using cyclic and linear sweep voltammetry. Under optimized conditions, current and concentration showed linear dependence in Britton Robinson buffer at pH 3.00 for boron doped diamond and pH 3.00 phosphate buffers for glassy carbon electrodes. Differential pulse and square wave voltammetry were used for the determination of riluzole levels in serum samples and pharmaceutical formulations. The limit of detections were found as 5.25 × 10?7 M and 8.26 × 10?8 M for glassy carbon electrode and 1.78 × 10?7 M and 8.42 × 10?8 M for boron-doped diamond electrodes, in serum samples, using differential pulse and square wave methods, respectively.  相似文献   

4.
Chunya Li 《Mikrochimica acta》2007,157(1-2):21-26
Multi-wall carbon nanotubes (MWNT) were dispersed into water in the presence of dicetyl phosphate (DCP), and MWNT-DCP composite film coated glassy carbon electrodes (GCE) were constructed. The electrochemical properties of 2-chlorophenol at a bare GCE and MWNT-DCP modified GCE were compared. It was found that MWNT-DCP modified GCEs significantly enhance the oxidation peak current of 2-chlorophenol and lowers its oxidation overpotential, suggesting great potential in the sensitive determination of 2-chlorophenol. Finally, a sensitive and simple voltammetric method was developed for the determination of 2-chlorophenol. The oxidation peak current increases linearly with the concentration in the range of 1.0 × 10−7–2.0 × 10−5 mol L−1, and the detection limit is 4.0 × 10−8 mol L−1 for 2 min accumulation. The method was successfully used to determine 2-chlorophenol in waste water samples.  相似文献   

5.
A novel voltammetric sensor, based on single-walled carbon nanotubes (SWNT) dispersed in Nafion and modified glassy carbon electrode (GCE), was fabricated and used to determine the trace amounts of dihydromyricetin (DMY). The electrochemical behavior of DMY at this sensor was investigated in 0.1 mol L−1 sulfuric acid solutions + 0.1 mol L−1 NaCl by cyclic voltammetry and squarewave voltammetry. Compared with bare GCE, the electrode presented an excellent response of DMY through an adsorption-controlled quasi-reversible process. Under the optimum conditions, the response peak currents were linear relationship with the DMY concentrations in the range of 1.0 × 10−7–1.0 × 10−5 mol L−1 with a detection limit of 9 × 10−8 mol L−1. Based on this voltammetric sensor, a simple and sensitive electroanalytical method for DMY was proposed and applied to quantitative determination of DMY in Ampelopsis grossedentata samples. In addition, the oxidation mechanism was proposed and discussed, which could be a reference for the pharmacological action of DMY in clinical study.  相似文献   

6.
Dilek Kul  Bengi Uslu 《Talanta》2010,82(1):286-630
Ziprasidone is a psychotropic agent used for the treatment of schizophrenia. Its oxidation was investigated electrochemically at boron-doped diamond and glassy carbon electrodes using cyclic, differential pulse, and square wave voltammetry. The dependence of the peak current and peak potentials on pH, concentration, nature of the buffer, and scan rate were examined. The process was diffusion and adsorption controlled for boron-doped diamond and glassy carbon electrodes, respectively. The possible mechanism of oxidation was discussed with some model compounds that have indole and piperazine oxidations. A linear response was obtained between 8 × 10−7 and 8 × 10−5 M for the first peak in acetate buffer (pH 5.5) and between 2 × 10−6 and 2 × 10−4 M for the second peak in 0.1 M H2SO4 with boron-doped diamond electrode for differential pulse and square wave voltammetric techniques. The reproducibility and accuracy of the proposed methods were found between 0.31 and 1.20, 99.27 and 100.22, respectively. The recovery studies were also achieved to check selectivity and accuracy of the methods. The proposed methods were applied for the determination of ziprasidone from pharmaceutical dosage forms and human serum samples without any time-consuming extraction, separation, evaporation or adsorption steps prior to drug assay except precipitation of the proteins using acetonitrile. The results were statistically compared with those obtained through an established LC-UV technique, no significant differences were been found between the voltammetric and LC methods.  相似文献   

7.
The voltammetric determination of 2-mercaptobenzimidazole (MBI) was studied by using a glassy carbon electrode (GCE) coated with polymeric nickel and copper tetraaminophthalocyanine (poly-NiTAPc and poly-CuTAPc) membrane. The polymeric membrane decreases the overpotential of oxidation of MBI by 136.2 and 115.0 mV and increases the oxidation peak current by about 3.4 and 3.3 times, while the reduction peak potential shifts positively by 113.0 and 84.1 mV and the peak current increases by about 10 and 7 times in 0.1 mol·l−1 phosphate buffer solution (PBS) at pH = 2.0 for poly-NiTAPc and poly-CuTAPc, respectively, compared to the unmodified GCE. The results indicated that the developed electrode exhibited efficient electrocatalytic activity for MBI with relatively high sensitivity, stability, and long life. The oxidation and reduction peak currents of MBI were linear to its concentrations ranging from 8.0 × 10−5 to 1.0 × 10−3 mol·l−1 at poly-NiTAPc and from 2.0 × 10−5 to 1.0 × 10−3 mol·l−1 at poly-NiTAPc membranes modified electrodes, respectively, with a low limit of detection.  相似文献   

8.
A simple and highly selective electrochemical method has been developed for the simultaneous determination of hydroquinone (HQ) and catechol (CC) at a glassy carbon electrode covalently modified with penicillamine (Pen). The electrode is used for the simultaneous electrochemical determination of HQ and CC and shows an excellent electrocatalytical effect on the oxidation of HQ and CC upon cyclic voltammetry in acetate buffer solution of pH 5.0. In differential pulse voltammetric measurements, the modified electrode was able to separate the oxidation peak potentials of HQ and CC present in binary mixtures by about 103 mV although the bare electrode gave a single broad response. The determination limit of HQ in the presence of 0.1 mmol L−1 CC was 1.0 × 10−6 mol L−1, and the determination limit of CC in the presence of 0.1 mmol L−1 HQ was 6.0 × 10−7 mol L−1. The method was applied to the simultaneous determination of HQ and CC in a water sample. It is simple and highly selective.  相似文献   

9.
In the present work, a new voltammetric sensor, Langmuir–Blodgett (LB) film of tetraoxocalix[2]arene[2]triazine (TOCT) modified glassy carbon electrode (LBTOCT-GCE), for trace analysis of copper ion in water samples, was prepared. The morphology of LBTOCT-GCE was characterized by cyclic voltammetric method, electrochemical impedance spectroscopy, and atomic force microscope. The recognizing mechanism of LBTOCT-GCE for copper ion in aqueous solution was discussed. Under the optimum experimental conditions, using square wave stripping voltammetry and accumulation time of 300 s, the peak currents were linear relationship with Cu2+ concentrations in the range of 2 × 10−9 to 1 × 10−6 mol L−1, with detection limit of 1 × 10−10 mol L−1. By this method, real samples (lake water, drinking water, and city wastewater) were analyzed with satisfactory results. In addition, the fabricated electrode exhibited a distinct advantage of simple preparation, non-toxicity, good reproducibility, and stability.  相似文献   

10.
The electrooxidative behaviour and determination of quetiapine (QTP), a dibenzothiazepine derivative and antipsychotic agent, on a glassy carbon disc electrode was investigated using cyclic (CV), linear sweep (LSV), differential pulse (DPV) and Osteryoung square wave voltammetry (OSWV). Fully validated DP and SW voltammetric procedures are described for the determination of QTP. QTP in pH 3.5 acetate buffer solution presents a well-defined anodic response, studied by the proposed methods. This main response was due to the irreversible, diffusion-controlled, one-electron and one-proton oxidation of the aliphatic nitrogen of the piperazine ring. Under optimal conditions, a detection limit of 4.0 × 10−8 mol L−1 for DPV and 1.33 × 10−7 mol L−1 for OSWV, and a linear calibration graph in the range from 4.0 × 10−6 to 2.0 × 10−4 mol L−1 were obtained for both methods. The procedure was successfully applied to the determination of the drug in tablets, human serum and human urine with good recoveries. The detection limits were 6.20 × 10−7 mol L−1 and 5.92 × 10−7 mol L−1 in human serum and 1.44 × 10−7 mol L−1 and 1.31 × 10−6 mol L−1 in human urine, for the DPV and OSWV method, respectively.  相似文献   

11.
Molecular wires containing copper(II) (CuMW), in the form of the coordination polymer (Cu(II)4(bpp)4(maa)8(H2O)2).2H2O (bpp=1,3-bis(4-pyridyl)propane, maa=2-methylacrylic acid), and multiwalled carbon nanotubes (CNT) have been combined to prepare a paste electrode (CuMW/CNT/PE). The voltammetric response of the CuMW/CNT/PE to metformin (MET) was significantly greater than that of electrodes prepared from other materials, because of both the surface effect of CuMW and CNT and coordination of MET with the Cu(II) ion in the CuMW. A novel voltammetric method for determination of MET is proposed. In pH 7.2 Britton–Robinson buffer, using single sweep voltammetry, the second-order derivative peak current for oxidation of MET at 0.97 V (relative to SCE) increased linearly with MET concentration in the range 9.0 × 10−7–5.0 × 10−5 mol L−1 and the detection limit was 6.5 × 10−7 mol L−1. Figure When a combination of molecular wires containing copper(II) (CuMW) and multiwalled carbon nanotubes (CNT) was used to prepare a paste electrode (CuMW/CNT/PE) the voltammetric response to metformin (curve c) was significantly higher than that at a carbon/PE (curve a) or a CNT/PE (curve b), because of the amplification effect of CNT and CuMW. A novel voltammetric method is proposed for determination of MET  相似文献   

12.
The electrocatalytic oxidation of quinine sulfate (QS) was investigated at a glassy carbon electrode, modified by a gel containing multiwall carbon nanotubes (MWCNTs) and room-temperature ionic liquid of 1-Butyl-3-methylimidazolium hexafluorophate (BMIMPF6) in 0.10 M of phosphate buffer solution (PBS, pH 6.8). It was found that an irreversible anodic oxidation peak of QS with E pa as 0.99 V appeared at MWCNTs-RTIL/glassy carbon electrode (GCE). The electrode reaction process was a diffusion-controlled one and the electrochemical oxidation involved two electrons transferring and two protons participation. Furthermore, the charge-transfer coefficient (α), diffusion coefficient (D), and electrode reaction rate constant (k f) of QS were found to be 0.87, 7.89 × 10−3 cm2⋅s−1 and 3.43 × 10−2 s−1, respectively. Under optimized conditions, linear calibration curves were obtained over the QS concentration range 3.0 × 10−6 to 1.0 × 10−4 M by square wave voltammetry, and the detection limit was found to be 0.44 μM based on the signal-to-noise ratio of 3. In addition, the novel MWCNTs-RTIL/GCE was characterized by the electrochemical impedance spectroscopy and the proposed method has been successfully applied in the electrochemical quantitative determination of quinine content in commercial injection samples and the determination results could meet the requirement.  相似文献   

13.
Functionalized polypyrrole films were prepared by incorporation of Fe(CN)6 3− as doping anion during the electropolymerization of pyrrole at a glassy carbon electrode from aqueous solution. The electrochemical behavior of the Fe(CN)6 3−/Fe(CN)6 4− redox couple in polypyrrole was studied by cyclic voltammetry. An obvious surface redox reaction was observed and dependence of this reaction on the solution pH was illustrated. The electrocatalytic ability of polypyrrole film with ferrocyanide incorporated was demonstrated by oxidation of ascorbic acid at the optimized pH of 4 in a glycine buffer. The catalytic effect for mediated oxidation of ascorbic acid was 300 mV and the bimolecular rate constant determined for surface coverage of 4.5 × 10−8 M cm−2 using rotating disk electrode voltammetry was 86 M−1 s−1. Furthermore, the catalytic oxidation current was linearly dependent on ascorbic acid concentration in the range 5 × 10−4–1.6 × 10−2 M with a correlation coefficient of 0.996. The plot of i p versus v 1/2 confirms the diffusion nature of the peak current i p. Received: 12 April 1999 / Accepted: 25 May 1999  相似文献   

14.
The electrooxidation of D-penicillamine (D-PA) has been studied in the presence of potassium iodide in various buffered aqueous solutions (4.00 ≤ pH ≤ 9.00) at the surface of glassy carbon electrode using cyclic voltammetry, differential pulse voltammetry and chronoamperometry. It has been found that under optimum pH (pH 5.00) in cyclic voltammetry, the electrooxidation of D-PA in the presence of potassium iodide as a homogeneous mediator occurred at a potential about 220 mV less positive than that in absence of potassium iodide at the surface of glassy carbon electrode. The homogeneous electrocatalytic oxidation current wave of D-penicillamine was linearly dependent on the D-PA concentration and a linear calibration curve was obtained in the ranges 3.0 × 10−5−1.5 × 10−3 M and 9.0 × 10−6−1.2 × 10−4 M of D-PA with cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods, respectively. The detection limits (2σ) were determined as 3.0 × 10−5 and 3.5 × 10−6 M with CV and DPV, respectively. This method was also used for voltammetric determination of D-PA in pharmaceutical preparation by standard addition method.  相似文献   

15.
A voltammetric sensor for the determination of parathion has been developed based on the use of a poly(carmine) film electrode. The reduction of parathion at the poly(carmine) modified glassy carbon electrode (GCE) is studied by cyclic voltammetry (CV) and linear scan voltammetry (LSV). Parathion yields a well-defined reduction peak at a potential of −0.595 V on the poly(carmine) modified GCE in pH 6.0 phosphate buffer solution (PBS). Compared with that on a bare GCE, the reduction peak current of parathion is significantly enhanced. All the experimental parameters are optimized for the determination of parathion. The reduction peak current is linear with the parathion concentration in the range of 5.0 × 10−8 to 1.0 × 10−5 mol L−1, and the detection limit is 1.0 × 10−8 mol L−1.  相似文献   

16.
The preparation and electrochemical characterization of glassy carbon electrodes modified with plumbagin were investigated by employing cyclic voltammetry, chronoamperometry and rotating disc electrode techniques. The cyclic voltammograms of the electroreduction of oxygen showed an enhanced current peak at approximately −0.289 V in air-saturated phosphate buffer pH = 7 and scan rate 10 mV s−1. The thermodynamic and kinetic parameters of the reduction of oxygen at glassy carbon have been evaluated using cyclic voltammetry. The experimental parameters were optimized and the mechanism of the catalytic process was discussed. The obtained values of E°′ (V vs. Ag/AgCl), the apparent electron transfer rate constant ks (s−1), heterogeneous rate constant for the reduction of O2 at the surface of the modified electrode kh (M−1 s−1) and α (charge transfer coefficient of oxygen) were as follows: −0.146, 23.4, 9.9 × 103 and 0.57, respectively. In addition, plumbagin exhibited strong catalytic activity toward the reduction of H2O2.  相似文献   

17.
The NiHCF-PEDOT, CuHCF-PEDOT and MnHCF-PEDOT films were prepared on glassy carbon electrode (GCE) by multiple scan cyclic voltammetry and characterized using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and scanning electron microscope (SEM) techniques. The advantages of these films are demonstrated for selectivity detection of ascorbic acid using cyclic voltammetry and amperometric method. Interestingly, the NiHCF-PEDOT and CuHCF-PEDOT modified electrodes exhibited a wide linear response range (5 × 10−6−3 × 10−4 M, R 2 = 0.9973 and 1.8 × 10−3−1.8 × 10−2 M, R 2 = 0.9924). The electrochemical sensors facilitated the oxidation of AA but not responded to other electroactive biomolecules such as dopamine, uric acid, H2O2, glucose. The difference is MnHCF-PEDOT/GCE that no response to AA. In addition, the NiHCF-PEDOT and CuHCF-PEDOT modified electrodes exhibited a distinct advantage of simple preparation, specificity, stability and reproducibility.  相似文献   

18.
A novel modified electrode was fabricated by electropolymerization of acid chrome blue K at a multi-walled carbon nanotubes modified glassy carbon electrode. The electrode developed was used for simultaneous determination of the isomers of dihydroxybenzene in environmental samples using first order linear sweep derivative voltammetry with background subtraction. A linear relationship between peak current and concentration of hydroquinone, catechol and resorcinol was obtained in the range of 1 × 10−6–1 × 10−4 mol L−1, and the detection limits were estimated to be 1 × 10−7, 1 × 10−7 and 9 × 10−8 mol L−1, respectively. The constructed electrode showed excellent reproducibility and stability. Real water samples were analyzed and satisfactory results were obtained. This method provides a new way of constructing electrodes for environmental and biological analysis.  相似文献   

19.
In this work, we investigate the electrochemical activity of dopamine (DA) and uric acid (UA) using both a bare and a modified carbon paste electrode as the working electrode, with a platinum wire as the counter electrode and a silver/silver chloride (Ag/AgCl) as the reference electrode. The modified carbon paste electrode consists of multi-walled carbon nanotubes (>95%) treated with α-cyclodextrine, resulting in an electrode that exhibits a significant catalytic effect toward the electro-chemical oxidation of DA in a 0.2-M Britton–Robinson buffer solution (pH 5.0). The peak current increases linearly with the DA concentration within the molar concentration ranges of 2.0 × 10−6 to 5.0 × 10−5 M and 5.0 × 10−5 to 1.9 × 10−4 M. The detection limit (signal to noise >3) for DA was found to be 1.34 × 10−7 M, respectively. In this work, voltammetric methods such as cyclic voltammetry, chronoamperometry, chronocuolometry, differential pulse and square wave voltammetry, and linear sweep and hydrodynamic voltammetry were used. Cyclic voltammetry was used to investigate the redox properties of the modified electrode at various scan rates. The diffusion coefficient (D, cm2 s−1 = 3.05 × 10−5) and the kinetic parameters such as the electron transfer coefficient (α = 0.51) and the rate constant (k, cm3 mol−1 s−1 = 1.8 × 103) for DA were determined using electrochemical approaches. By using differential pulse voltammetry for simultaneous measurements, we obtained two peaks for DA and UA in the same solution, with the peak separation approximately 136 mV. The average recovery was measured at 102.45% for DA injection.  相似文献   

20.
In this study the application of home-made unmodified (GC) and bulk modified boron doped glassy carbon (GCB) electrodes for the voltammetric determination of the linuron was investigated. The electrodes were synthesized with a moderate temperature treatment (1000°C). Obtained results were compared with the electrochemical determination of the linuron using a commercial glassy carbon electrode (GC-Metrohm). The peak potential (E p ) of linuron oxidation in 0.1 mol dm−3 H2SO4 as electrolyte was similar for all applied electrodes: 1.31, 1.34 and 1.28 V for GCB, GC and GC-Metrohm electrodes, respectively. Potential of linuron oxidation and current density depend on the pH of supporting electrolyte. Applying GCB and GC-Metrohm electrodes the most intensive electrochemical response for linuron was obtained in strongly acidic solution (0.1 mol dm−3 H2SO4). Applying the boron doped glassy carbon electrode the broadest linear range (0.005–0.1 μmol cm−3) for the linuron determination was obtained. The results of voltammetric determination of the linuron in spiked water samples showed good correlation between added and found amounts of linuron and also are in good agreement with the results obtained by HPLC-UV method. This appears to be the first application of a boron doped glassy carbon electrode for voltammetric determination of the environmental important compounds.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号