首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The process of phenol oxidation on a boron-doped diamond electrode (BDD) is studied in acidic electrolytes under different conditions of generation of active oxygen forms (AOFs). The scheme of phenol oxidation known from the literature for other electrode materials is confirmed. Phenol is oxidized through a number of intermediates (benzoquinone, carboxylic acids) to carbon dioxide and water. Comparative analysis of phenol oxidation rate constants is performed as dependent on the electrolysis conditions: direct anodic oxidation, with oxygen bubbling, and addition of H2O2. A scheme is confirmed according to which active radicals (OH·, HO2·, HO2) are formed on a BDD anode that can oxidize the substrate which leads to formation of organic radicals interacting with each other and forming condensation products. Processes with participation of free radicals (chain-radical mechanism) play an important role in electrochemical oxidation on BDD. Intermediates and polymeric substances (polyphenols, quinone structures, and resins) are formed. An excess of the oxidant (H2O2) promotes a more effective oxidation of organic radicals and accordingly inhibition of the condensation process.  相似文献   

2.
Indirect electrochemical oxidation of acetic to peracetic acid in aqueous solutions using hydrogen peroxide generated in situ from O2 in a gas diffusion electrode was studied. The use of sulfuric acid and ammonium molybdate as catalysts accelerated the formation of peracetic acid during the electrolysis, and the use of both catalysts allowed us to prepare 0.02 M solutions. The limiting stage of the electrosynthesis of peracetic acid was the chemical interaction of the substrate with the generated H2O2. The desired product mainly formed during the storage of the reaction mixture after the electrosynthesis. In electrolytes with more than 3.5 M acetic acid, the electrochemical activity of the gas-diffusion cathode decreased.  相似文献   

3.
A facile electrosynthesis route for the preparation of polymer nanogels based on the in situ production of hydroxyl radicals is reported for the first time. Electro-Fenton process with continuous H2O2 electrogeneration and Fe2 + regeneration performs better than electro-oxidation with a boron-doped diamond or dimensionally stable anode for promoting crosslinking of poly(vinylpyrrolidone).  相似文献   

4.
Thin-film boron-doped diamond (BDD) electrochemistry has made a tremendous progress in electrochemical synthesis/recovery of high-added value products from aqueous and gaseous waste streams. The distinguished electrochemical characteristic of this electrode has made this material emerging and successfully used in electrosynthetic transformations, besides its destructive and powerful performance in disinfection and detoxification of wastewaters. Organic electrosynthesis is achieved by the oxyl radical oxidation formed at BDD, peroxo compounds electrosynthesis is attained by oxidation of corresponding anions at the BDD surface, whereas electrochemical conversion of SO2, CO2, NO3?, and NH3 to value-added products occurs by BDD cathodic reduction process. There are still some challenges needed to address for seamless scale-up and translation into application of this future technology.  相似文献   

5.
A Li4Ti5O12/carbon nanofibers (LTO/CNFs) composite has been synthesized by solid-state reaction with the in situ growth of CNFs using the chemical vapor deposition method in N2/C2H2. The nanocomposite is characterized by X-ray powder diffraction, field emission scanning electron microscopy, transmission electron microscopy, Raman spectrum, and nitrogen adsorption/desorption isotherms, and is investigated as an anode material for lithium-ion (Li-ion) batteries. The underlying mechanism for the improvement is analyzed by cyclic voltammetry and electrochemical impedance spectroscopy. The in situ synthesized composite shows better electrochemical performance than the bare LTO. The in situ formation of CNFs not only supply an efficient electronic conductive network but also reduce the particle size of LTO and increase in specific surface area, leading to increased electrical conductivity and rapider Li-ion diffusion in electrode/electrolyte interface and bulk electrode.  相似文献   

6.
An aqueous paired electrosynthesis is studied in a divided cell. On graphite anode Br was oxidized to Br2 and this generated Br2 oxidized alcohols to the corresponding carbonyl compounds while Sn2+ was reduced to Sn0 on graphite cathode. Then the produced metallic tin mediated allylation of the carbonyl compounds with allyl bromide to generate the corresponding homoallylic alcohols. In the reaction the mediators (Sn and Br2) were generated in situ and could be reused via the electrolysis. Both working electrode and the counter electrode were utilized to generate useful products without the sacrifice of the electrode materials.  相似文献   

7.
Designing highly efficient and stable electrode-electrolyte interface for hydrogen peroxide (H2O2) electrosynthesis remains challenging. Inhibiting the competitive side reaction, 4 e oxygen reduction to H2O, is essential for highly selective H2O2 electrosynthesis. Instead of hindering excessive hydrogenation of H2O2 via catalyst modification, we discover that adding a hydrogen-bond acceptor, dimethyl sulfoxide (DMSO), to the KOH electrolyte enables simultaneous improvement of the selectivity and activity of H2O2 electrosynthesis. Spectral characterization and molecular simulation confirm that the formation of hydrogen bonds between DMSO and water molecules at the electrode-electrolyte interface can reduce the activity of water dissociation into active H* species. The suitable H* supply environment hinders excessive hydrogenation of the oxygen reduction reaction (ORR), thus improving the selectivity of 2 e ORR and achieving over 90 % selectivity of H2O2. This work highlights the importance of regulating the interfacial hydrogen-bond environment by organic molecules as a means of boosting electrochemical performance in aqueous electrosynthesis and beyond.  相似文献   

8.
Dong-Fang Niu 《Tetrahedron》2008,64(46):10517-10520
A simple and efficient electrocarboxylation reaction of aliphatic halides has been developed using silver as cathode, magnesium as anode and CH3CN saturated CO2 as solvent in an undivided cell. The influence of some key factors (such as the nature of electrode materials, supporting electrolytes and temperature) on this reaction was investigated. Under the optimized condition, the corresponding carboxylic acids were obtained in moderate to good yields (22-89%). The electrochemical behaviour was studied at different electrodes (Ag, Cu, Ni and Ti) by cyclic voltammetry, which showed significant electrocatalytic effect of the silver electrode towards the reductive carboxylation of aliphatic halides.  相似文献   

9.
The electrosynthesis of N-acetyl-l-cysteine (NAC) from the electroreduction of N,N-diacetyl-l-cystine (NNDAC) using a Polymer Electrolyte Membrane Electrochemical Reactor (PEMER) has been carried out. The Membrane Electrode Assembly (MEA) was formed by a cathode with a catalyst layer made of Pb/C 20 wt% supported on Toray Paper and a catalyst loading of 0.5 mg Pb cm?2. The anode was a 2 mg Pt cm?2 gas diffusion anode fed with H2. The main advantages of this process are: (1) the electrochemical reactor allows to carry out the electrosynthesis without supporting electrolyte, improving in this way the NAC purification and (2) a pronounced decrease of the electrosynthesis energy consumption due to both, the small internal resistance of the PEMER (electrode gap very small and electrolyte very conductive) and the choice of the H2 oxidation as anodic reaction in stead of the oxygen evolution reaction from water oxidation. The large number of pharmaceutical applications of NAC, as well as the high versatility of the PEMER for electrosynthesis processes, makes interesting the use of MEAs for electroorganic synthesis.  相似文献   

10.
Hydrogen peroxide (H2O2)is an important chemical with multiple uses across domestic and industrial settings. With a global need for wider adoption of green synthetic methods, there has been a growing interest in the electrochemical synthesis of H2O2 from oxygen reduction or water oxidation. State-of-the-art catalyst and reactor developments are beginning to advance to a stage where electrochemical synthesis is discussed as a viable alternative to current industrial methods. In this review, we highlight some of the most promising candidates for H2O2 electrosynthesis technologies and what further advancements are needed before the electrochemical route could challenge the ubiquitous anthraquinone process.  相似文献   

11.
Metal oxalate has become a most promising candidate as an anode material for lithium-ion and sodium-ion batteries. However, capacity decrease owing to the volume expansion of the active material during cycling is a problem. Herein, a rod-like CoC2O4⋅2 H2O/rGO hybrid is fabricated through a novel multistep solvo/hydrothermal strategy. The structural characteristics of the CoC2O4⋅2 H2O microrod wrapped using rGO sheets not only inhibit the volume variation of the hybrid electrode during cycling, but also accelerate the transfer of electrons and ions in the 3 D graphene network, thereby improving the electrochemical properties of CoC2O4⋅2 H2O. The CoC2O4⋅2 H2O/rGO electrode delivers a specific capacity of 1011.5 mA h g−1 at 0.2 A g−1 after 200 cycles for lithium storage, and a high capacity of 221.1 mA h g−1 at 0.2 A g−1 after 100 cycles for sodium storage. Moreover, the full cell CoC2O4⋅2 H2O/rGO//LiCoO2 consisting of the CoC2O4⋅2 H2O/rGO anode and LiCoO2 cathode maintains 138.1 mA h g−1 after 200 cycles at 0.2 A g−1 and has superior long-cycle stability. In addition, in situ Raman spectroscopy and in situ and ex situ X-ray diffraction techniques provide a unique opportunity to understand fully the reaction mechanism of CoC2O4⋅2 H2O/rGO. This work also gives a new perspective and solid research basis for the application of metal oxalate materials in high-performance lithium-ion and sodium-ion batteries.  相似文献   

12.
《中国化学快报》2022,33(11):4740-4745
The flow-through electro-Fenton (EF-T) reactor with WBC cathode was designed to remove florfenicol (FF). The activated WBC cathode was prepared by facile carbonization and activation methods, and featured high specific surface area, natural multi-channel structure, abundant oxygen-containing groups, good hydrophilicity, and excellent O2 reducing capacity. WBC cathode was located above Ti/Ru-IrO2 mesh anode. O2 evolved at the anode was carried to the inner wall of channel of WBC by the force of buoyancy and water flow, which increases oxygen source of H2O2 generation at the cathode. The flow-through system by using WBC electrode promote the mass transfer of O2 and FF. The production amount of H2O2 at activated WBC was 32.2 mg/L, which was almost twice as much as that at non-activated WBC (15.0 mg/L). FF removal ratio in EF-T system was 98%, which was much higher than that of traditional flow-by electro-Fenton (EF-B, 33%) or single electrooxidation system (EO, 16%). EF-T system has the lowest energy consumption (4.367 kWh/kg) among the three electrochemical systems. The cathodic adsorption, anodic electrooxidation, and EF reaction are responsible for the degradation of FF. After five consecutive cycle experiments, FF removal ratio was still 98%, indicating WBC has the good stability.  相似文献   

13.
H2O2 production by electroreduction of O2 is an attractive alternative to the current anthraquinone process, which is highly desirable for chemical industries and environmental remediation. However, it remains a great challenge to develop cost‐effective electrocatalysts for H2O2 synthesis. Here, hierarchically porous carbon (HPC) was proposed for the electrosynthesis of H2O2 from O2 reduction. It exhibited high activity for O2 reduction and good H2O2 selectivity (95.0–70.2 %, most of them >90.0 % at pH 1–4 and >80.0 % at pH 7). High‐yield H2O2 generation has been achieved on HPC with H2O2 concentrations of 222.6–62.0 mmol L?1 (2.5 h) and corresponding H2O2 production rates of 395.7–110.2 mmol h?1 g?1 at pH 1–7 and ?0.5 V. Moreover, HPC was energy‐efficient for H2O2 production with current efficiency of 81.8–70.8 %. The exceptional performance of HPC for electrosynthesis of H2O2 could be attributed to its high content of sp3‐C and defects, large surface area and fast mass transfer.  相似文献   

14.
The possibility of electrosynthesis of hydrogen peroxide in the electroreduction of oxygen in a gas-diffusion electrode in solutions of salts that form the molecular addition products (peroxo solvates) with H2O2 was studied. In KF and potassium and sodium phosphate solutions, H2O2 was obtained at concentrations of 2.3–3.6 M at current densities of 0.1–0.15 A/cm2 and current efficiencies of 75–92%. The resulting solutions were concentrated to 11–27 M to give solid peroxo solvates with high hydrogen peroxide contents (22–50%). These results demonstrate that the application of gas-diffusion electrodes for electrosynthesis of inorganic products can be significantly expanded.  相似文献   

15.
We report a carbon–air battery for power generation based on a solid‐oxide fuel cell (SOFC) integrated with a ceramic CO2‐permeable membrane. An anode‐supported tubular SOFC functioned as a carbon fuel container as well as an electrochemical device for power generation, while a high‐temperature CO2‐permeable membrane composed of a CO32? mixture and an O2? conducting phase (Sm0.2Ce0.8O1.9) was integrated for in situ separation of CO2 (electrochemical product) from the anode chamber, delivering high fuel‐utilization efficiency. After modifying the carbon fuel with a reverse Boudouard reaction catalyst to promote the in situ gasification of carbon to CO, an attractive peak power density of 279.3 mW cm?2 was achieved for the battery at 850 °C, and a small stack composed of two batteries can be operated continuously for 200 min. This work provides a novel type of electrochemical energy device that has a wide range of application potentials.  相似文献   

16.
Silver molybdate, Ag2Mo2O7, has been prepared by a conventional solid‐state reaction. Its electrochemical properties as an anode material for sodium‐ion batteries (SIBs) have been comprehensively examined by means of galvanostatic charge–discharge cycling, cyclic voltammetry, and rate performance measurements. At operating voltages between 3.0 and 0.01 V, the electrode delivered a reversible capacity of nearly 190 mA h g?1 at a current density of 20 mA g?1 after 70 cycles. Ag2Mo2O7 also demonstrated a good rate capability and long‐term cycle stability, the capacity reaching almost 100 mA h g?1 at a current density of 500 mA g?1, with a capacity retention of 55 % over 1000 cycles. Moreover, the sodium storage process of Ag2Mo2O7 has been investigated by means of ex situ XRD, Raman spectroscopy, and HRTEM. Interestingly, the anode decomposes into Ag metal and Na2MoO4 during the initial discharge process, and then Na+ ions are considered to be inserted into/extracted from the Na2MoO4 lattice in the subsequent cycles governed by an intercalation/deintercalation mechanism. Ex situ HRTEM images revealed that Ag metal not only remains unchanged during the sodiation/desodiation processes, but is well dispersed throughout the amorphous matrix, thereby greatly improving the electronic conductivity of the working electrode. The “in situ” decomposition behavior of Ag2Mo2O7 is distinct from that of chemically synthesized, metal‐nanoparticle‐coated electrode materials, and provides strong supplementary insight into the mechanism of such new anode materials for SIBs and may set a precedent for the design of further materials.  相似文献   

17.
The kinetics of oxygen isotope exchange between gas-phase oxygen and the electrochemical cell O2, Pt | ZrO2 + 10 mol % Y2O3 (YSZ) | Pt, O2 with applied potential difference (ΔU = ±1.2 V) is studied in the temperature range of 600–800°С and the oxygen pressure interval of 3–13 kPa. An original design of a vacuum electrochemical cell with the separated gas space is put forward for studying how the potential difference on the electrochemical cell influences the kinetics of interaction of gas-phase oxygen with the gas electrode O2, Pt | YSZ in the electrochemical cell. It is shown that the oxygen interphase exchange rate is the higher the more negative the charge on the electrode studied; moreover, the mechanism of gas-phase oxygen exchange with the gas electrode O2, Pt | YSZ in the electrochemical cell depends fundamentally on the electrode charge sign. The possible reasons for the revealed differences are discussed; the corresponding models are proposed.  相似文献   

18.
Ozone (O3) has been generated on Ni–Sb–SnO2/Ti electrode as anode immersed in acidic media at 25 °C by electrochemical process. The anode was electrochemically characterized by cyclic voltammetry and morphologically characterized by scanning electron microscopy (SEM) and X-ray diffraction. The concentration of dissolved ozone was determined by a UV/Vis spectrophotometer. The type of electrode with different times coating on the titanium mesh and different acid type and various concentrations (C acid) were used, and the stability of the electrode was investigated under the experimental conditions by SEM images. Results shows that higher efficiency (53.7%) for O3 generation by electrochemical oxidation of water were obtained in HClO4 (1 M) and an applied potential of 2.4 V vs. Ag/AgCl in 150 ml volume undivided electrochemical cell.  相似文献   

19.
A novel method to fabricate a third‐generation hydrogen peroxide biosensor was reported. The electrode was first derivatized by electrochemical reduction of in situ generated 4‐carboxyphenyl diazonium salt (4‐CPDS) in acidic aqueous solution yielded stable 4‐carboxyphenyl (4‐CP) layer. The horseradish peroxidase (HRP) enzyme was then covalently immobilized by amidation between NH2 terminus of enzyme and COOH terminus of 4‐CP film making use of the carbodiimide chemistry. Electrodeposition conditions used to control electrode functionalization density and film electron transfer kinetics were assessed by chronoamperometry and electrochemical impedance spectroscopy. The immobilized HRP displayed excellent electrocatalytic activity towards the reduction of hydrogen peroxide (H2O2) without any mediators. The effect of various operational parameters was explored for optimum analytical performance. The reported biosensor exhibited fast amperometric response (within 5 s) to H2O2. The detection limit of the biosensor was 5 μM, and linear range was from 20 μM to 20 mM. Furthermore, the biosensor exhibited high sensitivity, good reproducibility, and long‐term stability.  相似文献   

20.
The method is based on the measurement of the diffusion controlled limiting current obtained with the cathodic reduction of ozone according to O3 + 2H+ + 2e? → H2O + O2 in sulphuric acid. The electrolyte is vigorously mixed with the gas containing ozone and circulated through the electrolytic cell by the ascending gas flow operating as a gas-lift pump. The solution saturated with ozone moves along a cylindric electrode consisting of a smooth platinum foil in laminar flow. A constant potential is maintained at the electrode by means of a potentiostat in such a way, that the electrochemical reaction is proceeding under limiting current conditions. A lead anode of high capacitiy is used as a counter- and reference electrode. The current recorded continuously is directly proportional to the concentration of ozone in gas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号