首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
l-cysteine undergoes facile electron transfer with heteropoly 10-tungstodivanadophosphate, [ \textPV\textV \textV\textV \textW 1 0 \textO 4 0 ]5 - , \left[ {{\text{PV}}^{\text{V}} {\text{V}}^{\text{V}} {\text{W}}_{ 1 0} {\text{O}}_{ 4 0} } \right]^{5 - } , at ambient temperature in aqueous acid medium. The stoichiometric ratio of [cysteine]/[oxidant] is 2.0. The products of the reaction are cystine and two electron-reduced heteropoly blue, [PVIVVIVW10O40]7−. The rates of the electron transfer reaction were measured spectrophotometrically in acetate–acetic acid buffers at 25 °C. The orders of the reaction with respect to both [cysteine] and [oxidant] are unity, and the reaction exhibits simple second-order kinetics at constant pH. The pH-rate profile indicates the participation of deprotonated cysteine in the reaction. The reaction proceeds through an outer-sphere mechanism. For the dianion SCH2CH(NH3 +)COO, the rate constant for the cross electron transfer reaction is 96 M−1s−1 at 25 °C. The self-exchange rate constant for the - \textSCH2 \textCH( \textNH3 + )\textCOO - \mathord
/ \vphantom - \textSCH2 \textCH( \textNH3 + )\textCOO - ·\textSCH2 \textCH( \textNH3 + )\textCOO - ·\textSCH2 \textCH( \textNH3 + )\textCOO - {{{}^{ - }{\text{SCH}}_{2} {\text{CH}}\left( {{{\text{NH}}_{3}}^{ + } } \right){\text{COO}}^{ - } } \mathord{\left/ {\vphantom {{{}^{ - }{\text{SCH}}_{2} {\text{CH}}\left( {{{\text{NH}}_{3}}^{ + } } \right){\text{COO}}^{ - } } {{}^{ \bullet }{\text{SCH}}_{2} {\text{CH}}\left( {{{\text{NH}}_{3}}^{ + } } \right){\text{COO}}^{ - } }}} \right. \kern-\nulldelimiterspace} {{}^{ \bullet }{\text{SCH}}_{2} {\text{CH}}\left( {{{\text{NH}}_{3}}^{ + } } \right){\text{COO}}^{ - } }} couple was evaluated using the Rehm–Weller relationship.  相似文献   

2.
A ternary binuclear complex of dysprosium chloride hexahydrate with m-nitrobenzoic acid and 1,10-phenanthroline, [Dy(m-NBA)3phen]2·4H2O (m-NBA: m-nitrobenzoate; phen: 1,10-phenanthroline) was synthesized. The dissolution enthalpies of [2phen·H2O(s)], [6m-HNBA(s)], [2DyCl3·6H2O(s)], and [Dy(m-NBA)3phen]2·4H2O(s) in the calorimetric solvent (VDMSO:VMeOH = 3:2) were determined by the solution–reaction isoperibol calorimeter at 298.15 K to be \Updelta\texts H\textmq \Updelta_{\text{s}} H_{\text{m}}^{\theta } [2phen·H2O(s), 298.15 K] = 21.7367 ± 0.3150 kJ·mol−1, \Updelta\texts H\textmq \Updelta_{\text{s}} H_{\text{m}}^{\theta } [6m-HNBA(s), 298.15 K] = 15.3635 ± 0.2235 kJ·mol−1, \Updelta\texts H\textmq \Updelta_{\text{s}} H_{\text{m}}^{\theta } [2DyCl3·6H2O(s), 298.15 K] = −203.5331 ± 0.2200 kJ·mol−1, and \Updelta\texts H\textmq \Updelta_{\text{s}} H_{\text{m}}^{\theta } [[Dy(m-NBA)3phen]2·4H2O(s), 298.15 K] = 53.5965 ± 0.2367 kJ·mol−1, respectively. The enthalpy change of the reaction was determined to be \Updelta\textr H\textmq = 3 6 9. 4 9 ±0. 5 6   \textkJ·\textmol - 1 . \Updelta_{\text{r}} H_{\text{m}}^{\theta } = 3 6 9. 4 9 \pm 0. 5 6 \;{\text{kJ}}\cdot {\text{mol}}^{ - 1} . According to the above results and the relevant data in the literature, through Hess’ law, the standard molar enthalpy of formation of [Dy(m-NBA)3phen]2·4H2O(s) was estimated to be \Updelta\textf H\textmq \Updelta_{\text{f}} H_{\text{m}}^{\theta } [[Dy(m-NBA)3phen]2·4H2O(s), 298.15 K] = −5525 ± 6 kJ·mol−1.  相似文献   

3.
In the present work the uranyl hexacyanoferrate (K2UO2[Fe(CN)6]) is deposited on the palladized aluminum (Pd-Al) electrode from a \textUO22 + + \textFe( \textCN )6 - 3 {\text{UO}}_{2}^{2 + } + {\text{Fe}}\left( {\text{CN}} \right)_{6}^{ - 3} solution. Then the anodic stripping chronopotentiometry (ASCP) was used to strip the K2UO2[Fe(CN)6] from the Pd-Al surface. The operational conditions including: pH, K3Fe(CN)6 concentration, deposition potential, deposition time and stripping current were optimized. The ASCP calibration graph was linear in concentration range 10–460 μM. of \textUO22 + {\text{UO}}_{2}^{2 + } and the detection limit was 8.5 μM. The interference of some concomitant ions during the deposition process of K2UO2[Fe(CN)6] was studied. The proposed method was successfully applied for analysis of some uranium mineral ores.  相似文献   

4.
Summary The standard molar enthalpy of formation of methyl methylthiomethyl sulfoxide, CH3(CH3SCH2)SO, at T=298.15 K in the liquid state was determined to be -199.4±1.5 kJ mol-1 by means of oxygen rotating-bomb combustion calorimetry.  相似文献   

5.
[ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]M (M = K, Tl) reacts with “GaI” to give a series of compounds that feature Ga–Ga bonds, namely [ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]Ga→GaI3, [ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]GaGaI2GaI2( \textHpz\textMe2 {\text{Hpz}}^{{{\text{Me}}_{2} }} ) and [ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]Ga(GaI2)2Ga[ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ], in addition to the cationic, mononuclear Ga(III) complex {[ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]2Ga}+. Likewise, [ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]M (M = K, Tl) reacts with (HGaCl2) 2 and Ga[GaCl4] to give [ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]Ga→GaCl3, {[ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]2Ga}[GaCl4], and {[ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]GaGa[ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]}[GaCl4]2. The adduct [ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]Ga→B(C6F5)3 may be obtained via treatment of [ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]K with “GaI” followed by addition of B(C6F5)3. Comparison of the deviation from planarity of the GaY3 ligands in [ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]Ga→GaY3 (Y = Cl, I) and [ \textTm\textBu\textt {\text{Tm}}^{{{\text{Bu}}^{\text{t}} }} ]Ga→GaY3, as evaluated by the sum of the Y–Ga–Y bond angles, Σ(Y–Ga–Y), indicates that the [ \textTm\textBu\textt {\text{Tm}}^{{{\text{Bu}}^{\text{t}} }} ]Ga moiety is a marginally better donor than [ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]Ga. In contrast, the displacement from planarity for the B(C6F5)3 ligand of [ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]Ga→B(C6F5)3 is greater than that of [ \textTm\textBu\textt {\text{Tm}}^{{{\text{Bu}}^{\text{t}} }} ]Ga→B(C6F5)3, an observation that is interpreted in terms of interligand steric interactions in the former complex compressing the C–B–C bond angles.  相似文献   

6.
We have established and analyzed the sequences of phase transitions in synthesis of layered compounds in the AnBn–1O3n family ( \textA3\textII\textLnB3\textV\textO12 {\text{A}}_3^{\text{II}}{\text{LnB}}_3^{\text{V}}{{\text{O}}_{{12}}} (AII = Ba, Sr, Ln = La, Nd, BV = Nb, Ta) and La4Ti3O12 with n = 4) from coprecipitated hydroxocarbonate and hydroxide systems, including steps involving the formation, solid-phase reaction, or structural rearrangement of intermediates.  相似文献   

7.
The molar enthalpies of solution of 2-aminopyridine at various molalities were measured at T=298.15 K in double-distilled water by means of an isoperibol solution-reaction calorimeter. According to Pitzer’s theory, the molar enthalpy of solution of the title compound at infinite dilution was calculated to be DsolHm = 14.34 kJ·mol-1\Delta_{\mathrm{sol}}H_{\mathrm{m}}^{\infty} = 14.34~\mbox{kJ}\cdot\mbox{mol}^{-1}, and Pitzer’s ion interaction parameters bMX(0)L, bMX(1)L\beta_{\mathrm{MX}}^{(0)L}, \beta_{\mathrm{MX}}^{(1)L}, and CMXfLC_{\mathrm{MX}}^{\phi L} were obtained. Values of the relative apparent molar enthalpies ( φ L) and relative partial molar enthalpies of the compound ([`(L)]2)\bar{L}_{2}) were derived from the experimental enthalpies of solution of the compound. The standard molar enthalpy of formation of the cation C5H7N2 +\mathrm{C}_{5}\mathrm{H}_{7}\mathrm{N}_{2}^{ +} in aqueous solution was calculated to be DfHmo(C5H7N2+,aq)=-(2.096±0.801) kJ·mol-1\Delta_{\mathrm{f}}H_{\mathrm{m}}^{\mathrm{o}}(\mathrm{C}_{5}\mathrm{H}_{7}\mathrm{N}_{2}^{+},\mbox{aq})=-(2.096\pm 0.801)~\mbox{kJ}\cdot\mbox{mol}^{-1}.  相似文献   

8.
The oxidation of aquaethylenediaminetetraacetatocobaltate(II) [Co(EDTA)(H2O)]−2 by N-bromosuccinimide (NBS) in aqueous solution has been studied spectrophotometrically over the pH 6.10–7.02 range at 25 °C. The reaction is first-order with respect to complex and the oxidant, and it obeys the following rate law:
\textRate = k\textet K 2 K 3 [ \textCo\textII ( \textEDTA )( \textH 2 \textO ) - 2 ]\textT [\textNBS] \mathord/ \vphantom [\textNBS] ( [ \textH + ] + K 2 ) ( [ \textH + ] + K 2 ) {\text{Rate}} = k^{\text{et} } K_{ 2} K_{ 3} \left[ {{\text{Co}}^{\text{II}} \left( {\text{EDTA}} \right)\left( {{\text{H}}_{ 2} {\text{O}}} \right)^{ - 2} } \right]_{\text{T}} {{[{\text{NBS}}]} \mathord{\left/ {\vphantom {{[{\text{NBS}}]} {\left( {\left[ {{\text{H}}^{ + } } \right]{ + }K_{ 2} } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {\left[ {{\text{H}}^{ + } } \right]{ + }K_{ 2} } \right)}}  相似文献   

9.
For getting an insight into the mechanism of atmospheric autoxidation of sulfur(IV), the kinetics of this autoxidation reaction catalyzed by CoO, Co2O3 and Ni2O3 in buffered alkaline medium has been studied, and found to be defined by Eqs. I and II for catalysis by cobalt oxides and Ni2O3, respectively.
(I)
(II)
The values of empirical rate parameters were: A{0.22(CoO), 0.8 L mol−1s−1 (Co2O3)}, K 1{2.5 × 102 (Ni2O3)}, K 2{2.5 × 102(CoO), 0.6 × 102 (Co2O3)} and k 1{5.0 × 10−2(Ni2O3), 1.0 × 10−6(CoO), 1.7 × 10−5 s−1(Co2O3)} at pH 8.20 (CoO and Co2O3) and pH 7.05 (Ni2O3) and 30 °C. This is perhaps the first study in which the detailed kinetics in the presence of ethanol, a well known free radical scavenger for oxysulfur radicals, has been carried out, and the rate laws for catalysis by cobalt oxides and Ni2O3 in the presence of ethanol were Eqs. III and IV, respectively.
(III)
(IV)
For comparison, the effect of ethanol on these catalytic reactions was studied in acidic medium also. In addition, alkaline medium, the values of the inhibition factor C were 1.9 × 104 and 4.0 × 10L mol−1 s for CoO and Co2O3, respectively; for Ni2O3, C was only 3.0 × 102 only. On the other hand, in acidic medium, the values of this factor were all low: 20 (CoO), 0.7 (Co2O3) and 1.4 (Ni2O3). Based on these results, a radical mechanism for CoO and Co2O3 catalysis in alkaline medium, and a nonradical mechanism for Ni2O3 in both alkaline and acidic media and for cobalt oxides in acidic media are proposed.  相似文献   

10.
The assumption that potassium permanganate may serve as a kinetics standard in solid decomposition kinetics made a priori on the basis of the mechanism of the congruent dissociative vaporization of KMnO4 and its crystal structure was successfully supported experimentally. As expected, the decomposition rate of KMnO4 does not depend on the kind of foreign gas (He, air, CO2 and Ar) and on the measurement technique (isothermal or dynamic). Other requirements for KMnO4 as an ideal kinetics standard are satisfied as well. The use of the third-law method for determining the molar enthalpy of a reaction ( \Updelta\textr H\textT\texto / n ) \left( {\Updelta_{\text{r}} H_{\text{T}}^{\text{o}} / \nu } \right) provides an excellent reproducibility of results. The mean value of \Updelta\textr H\textT\texto / n \Updelta_{\text{r}} H_{\text{T}}^{\text{o}} / \nu from 12 experiments in different gases is 138.3 ± 0.6 kJ mol−1, which coincides with the value of 138.1 kJ mol−1 calculated from the isothermal measurements in different gases by the second-law method. As predicted by theory, the random errors of the second-law and Arrhenius plot methods are 10–20 times greater. In addition, the use of these methods in the case of dynamic measurements is related to large systematic errors caused by an inaccurate selection of the geometrical (contraction) model. The third-law method is practically free of these errors.  相似文献   

11.
From extraction experiments and γ-activity measurements, the exchange extraction constants corresponding to the general equilibrium M+ (aq) + NaL+ (nb) ⇔ ML+ (nb) + Na+ (aq) taking place in the two-phase water–nitrobenzene system (M= H3O+, \textNH4+ {\text{NH}}_{4}{}^{+} , Ag+, Tl+; L = hexaethyl p-tert-butylcalix[6]arene hexaacetate; aq = aqueous phase, nb = nitrobenzene phase) were evaluated. Furthermore, the stability constants of the ML+ complexes in nitrobenzene saturated with water were calculated; they were found to increase in the following order: \textAg +   <  NH4 +   <  \textH 3 \textO +   <  \textNa +   <  \textTl + . {\text{Ag}}^{ + } \, < \,\hbox{NH}_{4}{}^{ + } \, < \,{\text{H}}_{ 3} {\text{O}}^{ + } \, < \,{\text{Na}}^{ + } \, < \,{\text{Tl}}^{ + }.  相似文献   

12.
The stoichiometries, kinetics and mechanism of the reduction of tetraoxoiodate(VII) ion, IO4 to the corresponding trioxoiodate(V) ion, IO3 by n-(2-hydroxylethyl)ethylenediaminetriacetatocobaltate(II) ion, [CoHEDTAOH2] have been studied in aqueous media at 28 °C, I = 0.50 mol dm−3 (NaClO4) and [H+] = 7.0 × 10−3 mol dm−3. The reaction is first order in [Oxidant] and [Reductant], and the rate is inversely dependent on H+ concentration in the range 5.00 × 10−3 ≤ H+≤ 20.00 × 10−3 mol dm−3 studied. A plot of acid rate constant versus [H+]−1 was linear with intercept. The rate law for the reaction is:
- \frac[ \textCoHEDTAOH2 - ]\textdt = ( a + b[ \textH + ] - 1 )[ \textCoHEDTAOH2 - ][ \textIO4 - ] - {\frac{{\left[ {{\text{CoHEDTAOH}}_{2}^{ - } } \right]}}{{{\text{d}}t}}} = \left( {a + b\left[ {{\text{H}}^{ + } } \right]^{ - 1} } \right)\left[ {{\text{CoHEDTAOH}}_{2}^{ - } } \right]\left[ {{\text{IO}}_{4}^{ - } } \right]  相似文献   

13.
The standard molar Gibbs free energy of formation of YRhO3(s) has been determined using a solid-state electrochemical cell wherein calcia-stabilized zirconia was used as an electrolyte. The cell can be represented by: ( - )\textPt - Rh/{ \textY2\textO\text3( \texts ) + \textYRh\textO3( \texts ) + \textRh( \texts ) }//\textCSZ//\textO2( p( \textO2 ) = 21.21  \textkPa )/\textPt - Rh( + ) \left( - \right){\text{Pt - Rh/}}\left\{ {{{\text{Y}}_2}{{\text{O}}_{\text{3}}}\left( {\text{s}} \right) + {\text{YRh}}{{\text{O}}_3}\left( {\text{s}} \right) + {\text{Rh}}\left( {\text{s}} \right)} \right\}//{\text{CSZ//}}{{\text{O}}_2}\left( {p\left( {{{\text{O}}_2}} \right) = 21.21\;{\text{kPa}}} \right)/{\text{Pt - Rh}}\left( + \right) . The electromotive force was measured in the temperature range from 920.0 to 1,197.3 K. The standard molar Gibbs energy of the formation of YRhO3(s) from elements in their standard state using this electrochemical cell has been calculated and can be represented by: D\textfG\texto{ \textYRh\textO3( \texts ) }/\textkJ  \textmo\textl - 1( ±1.61 ) = - 1,147.4 + 0.2815  T  ( \textK ) {\Delta_{\text{f}}}{G^{\text{o}}}\left\{ {{\text{YRh}}{{\text{O}}_3}\left( {\text{s}} \right)} \right\}/{\text{kJ}}\;{\text{mo}}{{\text{l}}^{ - 1}}\left( {\pm 1.61} \right) = - 1,147.4 + 0.2815\;T\;\left( {\text{K}} \right) . Standard molar heat capacity Cop,m C^{o}_{{p,m}} (T) of YRhO3(s) was measured using a heat flux-type differential scanning calorimeter in two different temperature ranges from 127 to 299 K and 305 to 646 K. The heat capacity in the higher temperature range was fitted into a polynomial expression and can be represented by: $ {*{20}{c}} {\mathop C\nolimits_{p,m}^{\text{o}} \left( {{\text{YRh}}{{\text{O}}_3},{\text{s,}}T} \right)\left( {{\text{J}}\;{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}} \right)} & { = 109.838 + 23.318 \times {{10}^{ - 3}}T\left( {\text{K}} \right)} & { - 12.5964 \times {{10}^5}/{T^2}\left( {\text{K}} \right).} \\ {} & {\left( {305 \leqslant T\left( {\text{K}} \right) \leqslant 646} \right)} & {} \\ $ \begin{array}{*{20}{c}} {\mathop C\nolimits_{p,m}^{\text{o}} \left( {{\text{YRh}}{{\text{O}}_3},{\text{s,}}T} \right)\left( {{\text{J}}\;{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}} \right)} & { = 109.838 + 23.318 \times {{10}^{ - 3}}T\left( {\text{K}} \right)} & { - 12.5964 \times {{10}^5}/{T^2}\left( {\text{K}} \right).} \\ {} & {\left( {305 \leqslant T\left( {\text{K}} \right) \leqslant 646} \right)} & {} \\ \end{array} The heat capacity of YRhO3(s) was used along with the data obtained from the electrochemical cell to calculate the standard enthalpy and entropy of formation of the compound at 298.15 K.  相似文献   

14.
LiMnPO4, with a particle size of 50–150 nm, was prepared by oleic acid-assisted solid-state reaction. The materials were characterized by X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. The electrochemical properties of the materials were investigated by galvanostatic cycling. It was found that the introduction of oleic acid in the precursor led to smaller particle size and more homogeneous size distribution in the final products, resulting in improved electrochemical performance. The electrochemical performance of the sample could be further enhanced by Co doping. The mechanism for the improvement of the electrochemical performance was investigated by Li-ion chemical diffusion coefficient ( [(D)\tilde]\textLi ) \left( {{{\tilde{D}}_{\text{Li}}}} \right) and electrochemical impedance spectroscopy measurements. The results revealed that the [(D)\tilde]\textLi {\tilde{D}_{\text{Li}}} values of LiMnPO4 measured by cyclic voltammetry method increase from 9.2 × 10−18 to 3.0 × 10−17 cm2 s−1 after Co doping, while the charge transfer resistance (R ct) can be decreased by Co doping.  相似文献   

15.
An N-tert-butyloxycarbonylated organic synthesis intermediate, (S)-tert-butyl 1-phenylethylcarbamate, was prepared and investigated by means of differential scanning calorimetry (DSC) and thermogravimetry (TG). The molar heat capacities of (S)-tert-butyl 1-phenylethylcarbamate were precisely determined by means of adiabatic calorimetry over the temperature range of 80-380 K. There was a solid–liquid phase transition exhibited during the heating process with the melting point of 359.53 K. The molar enthalpy and entropy of this transition were determined to be 29.73 kJ mol−1 and 82.68 J K−1 mol−1 based on the experimental C pT curve, respectively. The thermodynamic functions, [HT0 - H298.150 H_{T}^{0} - H_{298.15}^{0} ] and [ST0 - S298.150 S_{T}^{0} - S_{298.15}^{0} ], were calculated from the heat capacity data in the temperature range of 80–380 K with an interval of 5 K. TG experiment showed that the pyrolysis of the compound was started at the temperature of 385 K and terminated at 510 K within one step.  相似文献   

16.
Combustion calorimetry, Calvet-drop sublimation calorimetry, and the Knudsen effusion method were used to determine the standard (p o = 0.1 MPa) molar enthalpies of formation of monoclinic (form I) and gaseous paracetamol, at T = 298.15 K: \Updelta\textf H\textm\texto ( \textC 8 \textH 9 \textO 2 \textN,\text cr I ) = - ( 4 10.4 ±1. 3)\text kJ  \textmol - 1 \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{O}}_{ 2} {\text{N}},{\text{ cr I}}} \right) = - ( 4 10.4 \pm 1. 3){\text{ kJ}}\;{\text{mol}}^{ - 1} and \Updelta\textf H\textm\texto ( \textC 8 \textH 9 \textO 2 \textN,\text g ) = - ( 2 80.5 ±1. 9)\text kJ  \textmol - 1 . \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{O}}_{ 2} {\text{N}},{\text{ g}}} \right) = - ( 2 80.5 \pm 1. 9){\text{ kJ}}\;{\text{mol}}^{ - 1} . From the obtained \Updelta\textf H\textm\texto ( \textC 8 \textH 9 \textO 2 \textN,\text cr I ) \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{O}}_{ 2} {\text{N}},{\text{ cr I}}} \right) value and published data, it was also possible to derive the standard molar enthalpies of formation of the two other known polymorphs of paracetamol (forms II and III), at 298.15 K: \Updelta\textf H\textm\texto ( \textC 8 \textH 9 \textO 2 \textN,\text crII ) = - ( 40 8.4 ±1. 3)\text kJ  \textmol - 1 \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{O}}_{ 2} {\text{N}},{\text{ crII}}} \right) = - ( 40 8.4 \pm 1. 3){\text{ kJ}}\;{\text{mol}}^{ - 1} and \Updelta\textf H\textm\texto ( \textC 8 \textH 9 \textO 2 \textN,\text crIII ) = - ( 40 7.4 ±1. 3)\text kJ  \textmol - 1 . \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{O}}_{ 2} {\text{N}},{\text{ crIII}}} \right) = - ( 40 7.4 \pm 1. 3){\text{ kJ}}\;{\text{mol}}^{ - 1} . The proposed \Updelta\textf H\textm\texto ( \textC 8 \textH 9 \textO 2 \textN,\text g ) \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{O}}_{ 2} {\text{N}},{\text{ g}}} \right) value, together with the experimental enthalpies of formation of acetophenone and 4′-hydroxyacetophenone, taken from the literature, and a re-evaluated enthalpy of formation of acetanilide, \Updelta\textf H\textm\texto ( \textC 8 \textH 9 \textON,\text g ) = - ( 10 9. 2 ± 2. 2)\text kJ  \textmol - 1 , \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{ON}},{\text{ g}}} \right) = - ( 10 9. 2\,\pm\,2. 2){\text{ kJ}}\;{\text{mol}}^{ - 1} , were used to assess the predictions of the B3LYP/cc-pVTZ and CBS-QB3 methods for the enthalpy of a isodesmic and isogyric reaction involving those species. This test supported the reliability of the theoretical methods, and indicated a good thermodynamic consistency between the \Updelta\textf H\textm\texto \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} (C8H9O2N, g) value obtained in this study and the remaining experimental data used in the \Updelta\textr H\textm\texto \Updelta_{\text{r}} H_{\text{m}}^{\text{o}} calculation. It also led to the conclusion that the presently recommended enthalpy of formation of gaseous acetanilide in Cox and Pilcher and Pedley’s compilations should be corrected by ~20 kJ mol−1.  相似文献   

17.
Isothermal anneals (at 873 K) and powder X-ray diffraction were used to study isothermal sections of phase diagrams of the NdF3-Nd2O3-MF2 (M = Ba, Sr) systems. In studying the NdF3-Nd2O3-BaF2 system, classical solid-phase synthesis was supplemented with mechanochemical activation of feedstock mixtures or BaF2 activated with gaseous hydrogen fluoride was used. In both systems, a solid solution with the fluorite structure based on MF2 and NdOF phases, a solid solution with the tysonite structure based on NdF3, and an ordered fluorite-related phase Ba4Nd3F17 were found. The NdOF-based solid solutions were shown to have polymorphism: βtrig ai αcub at ≈800 K; a new trigonal phase of these solid solutions has been discovered. The effect of a dimensional factor $\left( {R_{Ba^{2 + } } > R_{Sr^{2 + } } } \right)$\left( {R_{Ba^{2 + } } > R_{Sr^{2 + } } } \right) on phase formation and unit cell parameters of the solid solutions was traced.  相似文献   

18.
The mer-[Ru(pic)3] isomer, where pic is 2-pyridinecarboxylic acid, undergoes base hydrolysis at pH > 12. The reaction was monitored spectrophotometrically within the UV–Vis spectral range. The product of the reaction, the [Ru(pic)2(OH)2] ion, is formed via a consecutive two-stage process. The chelate ring opening is proceeded by the nucleophilic attack of OH ion at the carbon atom of the carboxylic group and the deprotonation of the attached hydroxo group. In the second stage, the fast deprotonation of the coordinated OH ligand leads to liberation of the monodentato bonded picolinate. The dependence of the observed pseudo-first-order rate constant on [OH] is given by k\textobs1 = \frack + k1 [\textOH - ] + k + k2 K1 [\textOH - ]2 k - + k1 + ( k + + k2 K1 )[\textOH - ] + k + K1 [\textOH - ]2 k_{{{\text{obs}}1}} = \frac{{k_{ + } k_{1} [{\text{OH}}^{ - } ] + k_{ + } k_{2} K_{1} [{\text{OH}}^{ - } ]^{2} }}{{k_{ - } + k_{1} + \left( {k_{ + } + k_{2} K_{1} } \right)[{\text{OH}}^{ - } ] + k{}_{ + }K_{1} [{\text{OH}}^{ - } ]^{2} }} and ( k\textobs2 = \frackca + kcb K2 [\textOH - ]1 + K2 [\textOH - ] ) \left( {k_{{{\text{obs}}2}} = \frac{{k_{ca} + k_{cb} K_{2} [{\text{OH}}^{ - } ]}}{{1 + K_{2} [{\text{OH}}^{ - } ]}}} \right) for the first and the second stage, respectively, where k 1, k 2, k -, k ca , k cb are the first-order rate constants and k + is the second-order one, K 1 and K 2 are the protolytic equilibria constants.  相似文献   

19.
We have determined the parameters of the Arrhenius equation (E, log A) for reactions between \textNO2+ {\text{NO}}_2^{+} ions and C3-C8 alkanes in HNO3–93 wt.% H2SO4 solutions at 277–353 K, and we have also estimated the activation parameters E j , log A j for secondary and tertiary C—H bonds of these alkanes. We show that the following compensation relations are satisfied: E = 2.3R βlog A + C with isokinetic temperature β = 360 ± 65 K, and also E j =2.3Rβ j log A j  + C j , for secondary C—H bonds, β2 =300 ± 60, and for tertiary C—H bonds, β3 =310 ± 50.  相似文献   

20.
This article reports the values of the standard (p o = 0.1 MPa) molar enthalpies of formation, in the gaseous phase, \Updelta\textf H\textm\texto ( \textg ), {{\Updelta}}_{\text{f}} H_{\text{m}}^{\text{o}} \left( {\text{g}} \right), at T = 298.15 K, of 2-acetyl-5-nitrothiophene and 5-nitro-2-thiophenecarboxaldehyde as −(48.8 ± 1.6) and (4.4 ± 1.3) kJ mol−1, respectively. These values were derived from experimental thermodynamic parameters, namely, the standard (p o = 0.1 MPa) molar enthalpies of formation, in the crystalline phase, \Updelta\textf H\textm\texto ( \textcr ) , {{\Updelta}}_{\text{f}} H_{\text{m}}^{\text{o}} \left( {\text{cr}} \right) , at T = 298.15 K, obtained from the standard molar enthalpies of combustion, \Updelta\textc H\textm\texto , {{\Updelta}}_{\text{c}} H_{\text{m}}^{\text{o}} , measured by rotating bomb combustion calorimetry, and from the standard molar enthalpies of sublimation, at T = 298.15 K, determined from the temperature–vapour pressure dependence, obtained by the Knudsen mass loss effusion method. The results are interpreted in terms of enthalpic increments and the enthalpic contribution of the nitro group in the substituted thiophene ring is compared with the same contribution in other structurally similar compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号