首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Hydrogen sulfide (H2S) exhibits promising protective effects in many (patho)physiological processes, as evidenced by recent reports using synthetic H2S donors in different biological models. Herein, we report the design and evaluation of compounds denoted PeroxyTCM, which are the first class of reactive oxygen species (ROS)‐triggered H2S donors. These donors are engineered to release carbonyl sulfide (COS) upon activation, which is quickly hydrolyzed to H2S by the ubiquitous enzyme carbonic anhydrase (CA). The donors are stable in aqueous solution and do not release H2S until triggered by ROS, such as hydrogen peroxide (H2O2), superoxide (O2?), and peroxynitrite (ONOO?). We demonstrate ROS‐triggered H2S donation in live cells and also demonstrate that PeroxyTCM‐1 provides protection against H2O2‐induced oxidative damage, suggesting potential future applications of PeroxyTCM and similar scaffolds in H2S‐related therapies.  相似文献   

2.
Hydrogen sulfide (H2S) is a biologically active molecule that exhibits protective effects in a variety of physiological and pathological processes. Although several H2S‐related biological effects have been discovered by using H2S donors, knowing how much H2S has been released from donors under different conditions remains challenging. Now, a series of γ‐ketothiocarbamate (γ‐KetoTCM) compounds that provide the first examples of colorimetric H2S donors and enable direct quantification of H2S release, were reported. These compounds are activated through a pH‐dependent deprotonation/β‐elimination sequence to release carbonyl sulfide (COS), which is quickly converted into H2S by carbonic anhydrase. The p‐nitroaniline released upon donor activation provides an optical readout that correlates directly to COS/H2S release, thus enabling colorimetric measurement of H2S donation.  相似文献   

3.
Persulfides (RSSH) have been hypothesized as critical components in sulfur‐mediated redox cycles and as potential signaling compounds, similar to hydrogen sulfide (H2S). Hindering the study of persulfides is a lack of persulfide‐donor compounds with selective triggers that release discrete persulfide species. Reported here is the synthesis and characterization of a ROS‐responsive (ROS=reactive oxygen species), self‐immolative persulfide donor. The donor, termed BDP‐NAC, showed selectivity towards H2O2 over other potential oxidative or nucleophilic triggers, resulting in the sustained release of the persulfide of N‐acetyl cysteine (NAC) over the course of 2 h, as measured by LCMS. Exposure of H9C2 cardiomyocytes to H2O2 revealed that BDP‐NAC mitigated the effects of a highly oxidative environment in a dose‐dependent manner over relevant controls and to a greater degree than common H2S donors sodium sulfide (Na2S) and GYY4137. BDP‐NAC also rescued cells more effectively than a non‐persulfide‐releasing control compound in concert with common H2S donors and thiols.  相似文献   

4.
A strategy to deliver a well‐defined persulfide species in a biological medium is described. Under near physiological conditions, the persulfide prodrug can be activated by an esterase to generate a “hydroxymethyl persulfide” intermediate, which rapidly collapses to form a defined persulfide. Such persulfide prodrugs can be used either as chemical tools to study persulfide chemistry and biology or for future development as H2S‐based therapeutic reagents. Using the persulfide prodrugs developed in this study, the reactivity between S ‐methyl methanethiosulfonate (MMTS) with persulfide was unambiguously demonstrated. Furthermore, a representative prodrug exhibited potent cardioprotective effects in a murine model of myocardial ischemia‐reperfusion (MI/R) injury with a bell shape therapeutic profile.  相似文献   

5.
Grapefruit juice inhibits esterase enzyme. Therefore, a possible interaction with ester prodrugs should be taken into consideration. In this study, the influence of grapefruit juice on sacubitril (SAC) rat liver S9 activation by esterase enzyme was evaluated. An RP‐HPLC method was developed and validated for estimation of SAC in rat liver S9 fraction using a C18 Cyano column as stationary phase and acetonitrile–sodium di‐hydrogen phosphate buffer (0.02 m , pH 4 adjusted by o‐phosphoric acid, 40:60, v/v), as mobile phase at a flow rate of 1 mL/min and UV detection at 254 nm. The method was successfully applied to an in vitro study in which SAC was incubated with rat liver S9 fraction prepared from rats that had previously ingested grapefruit juice for a week. The calculated SAC concentration after incubation was compared with that of SAC incubated with rat liver S9 fraction from the rat control group. The statistical significance between the results of test and control incubation sets was assessed. In conclusion, the current study demonstrated that grapefruit juice decreased SAC hydrolysis, hence delaying its activation to sacubitrilat (active form) in gut lumen. Based on this food–drug interaction, it may be required that grapefruit juice should be consumed with caution in patients receiving SAC.  相似文献   

6.
Reactive sulfur species (RSS) are biologically important molecules. Among them, H2S, hydrogen polysulfides (H2Sn, n>1), persulfides (RSSH), and HSNO are believed to play regulatory roles in sulfur‐related redox biology. However, these molecules are unstable and difficult to handle. Having access to their reliable and controllable precursors (or donors) is the prerequisite for the study of these sulfur species. Reported in this work is the preparation and evaluation of a series of O‐silyl‐mercaptan‐based sulfur‐containing molecules which undergo pH‐ or F?‐mediated desilylation to release the corresponding H2S, H2Sn, RSSH, and HSNO in a controlled fashion. This O→S relay deprotection serves as a general strategy for the design of pH‐ or F?‐triggered RSS donors. Moreover, we have demonstrated that the O‐silyl groups in the donors could be changed into other protecting groups like esters. This work should allow the development of RSS donors with other activation mechanisms (such as esterase‐activated donors).  相似文献   

7.
Sustainable, low‐temperature methods for natural gas activation are critical in addressing current and foreseeable energy and hydrocarbon feedstock needs. Large portions of natural gas resources are still too expensive to process due to their high content of hydrogen sulfide gas (H2S) mixed with methane, deemed altogether as sub‐quality or “sour” gas. We propose a unique method of activation to form a mixture of sulfur‐containing hydrocarbon intermediates, CH3SH and CH3SCH3, and an energy carrier such as H2. For this purpose, we investigated the H2S‐mediated methane activation to form a reactive CH3SH species by means of direct photolysis of sub‐quality natural gas. Photoexcitation of hydrogen sulfide in the CH4+H2S complex resulted in a barrierless relaxation by a conical intersection to form a ground‐state CH3SH+H2 complex. The resulting CH3SH could further be coupled over acidic catalysts to form higher hydrocarbons, and the resulting H2 used as a fuel. This process is very different from conventional thermal or radical‐based processes and can be driven photolytically at low temperatures, with enhanced control over the conditions currently used in industrial oxidative natural gas activation. Finally, the proposed process is CO2 neutral, as opposed to the current industrial steam methane reforming (SMR).  相似文献   

8.
The structures of 2‐[(2,3‐dimethylphenyl)carbamoyl]benzenesulfonamide, 2‐[(3,4‐dimethylphenyl)carbamoyl]benzenesulfonamide and 2‐[(2,6‐dimethylphenyl)carbamoyl]benzenesulfonamide, all C15H16N2O3S, are stabilized by extensive intra‐ and intermolecular hydrogen bonds. In all three structures, the sulfonamide and carbamoyl groups are involved in hydrogen bonding. In the 2,3‐dimethyl and 2,6‐dimethyl derivatives, dimeric units and chains of molecules are formed parallel to the c axis. In the 3,4‐dimethyl derivative, the hydrogen bonding creates tetrameric units, resulting in macrocyclic R44(22) rings that form sheets in the ab plane. The three analogues are closely related to the fenamate class of nonsteroidal anti‐inflammatory drugs.  相似文献   

9.
The enzymatic conversion of carbonyl sulfide (COS) to hydrogen sulfide (H2S) by carbonic anhydrase has been used to develop self-immolating thiocarbamates as COS-based H2S donors to further elucidate the impact of reactive sulfur species in biology. The high modularity of this approach has provided a library of COS-based H2S donors that can be activated by specific stimuli. A common limitation, however, is that many such donors result in the formation of an electrophilic quinone methide byproduct during donor activation. As a mild alternative, we demonstrate here that dithiasuccinoyl groups can function as COS/H2S donor motifs, and that these groups release two equivalents of COS/H2S and uncage an amine payload under physiologically relevant conditions. Additionally, we demonstrate that COS/H2S release from this donor motif can be altered by electronic modulation and alkyl substitution. These insights are further supported by DFT investigations, which reveal that aryl and alkyl thiocarbamates release COS with significantly different activation energies.  相似文献   

10.
The title benzothiazine‐3‐carboxamide, C17H16N2O4S, crystallized in two enantiomorphic crystal forms with the space groups P32 and P31 despite the absence of a classic stereogenic atom. The molecular structures are mirror images of each other. Only one sulfonyl O atom takes part in intramolecular hydrogen bonding as a proton acceptor and this atom is different in the two enantiomorphic structures. As a result, the S atom becomes a pseudo‐stereogenic centre. This fact is worth taking into account due to the different biological activities of the enantiomorphic forms. One form possesses a high analgesic activity, while the other form revealed a high anti‐inflammatory activity.  相似文献   

11.
A series of mononuclear metal complexes of Co(III), Ni(II) and Cu(II) with 2‐(2,4‐dichlorobenzamido)‐N′‐(3,5‐di‐tert‐butyl‐2‐hydroxybenzylidene)benzohydrazide ( LH 3 ) have been synthesized and characterized using various physico‐chemical, spectroscopic and single crystal X‐ray diffraction techniques. Structural studies of [Co( LH )( LH 2 )]·H2O ( 4 ) revealed the presence of both amido and imidol tautomeric forms of LH 3 , resulting in a distorted octahedral geometry around the Co(III) ion. [Ni( LH )(H2O)]·H2O ( 5 ) and [Cu( LH )(H2O)]·H2O ( 6 ) are isomorphous structures and crystallize in the monoclinic P21/c space group. The crystal structures of 4 , 5 and 6 are stabilized by hydrogen bonds formed by the enclathrated water molecules, C‐H···π and π···π interactions. Complexes along with the ligand ( LH 3 ) were screened for their in vivo anti‐inflammatory activity (carrageenan‐induced rat paw edema method) and in vitro antioxidant activity (DPPH free radical scavenging assay). Metal complexes have shown significant anti‐inflammatory and antioxidant potential.  相似文献   

12.
Abundant and toxic hydrogen sulfide (H2S) from industry and nature has been traditionally considered a liability. However, it represents a potential resource if valuable H2 and elemental sulfur can be simultaneously extracted through a H2S splitting reaction. Herein a photochemical‐chemical loop linked by redox couples such as Fe2+/Fe3+ and I?/I3? for photoelectrochemical H2 production and H2S chemical absorption redox reactions are reported. Using functionalized Si as photoelectrodes, H2S was successfully split into elemental sulfur and H2 with high stability and selectivity under simulated solar light. This new conceptual design will not only provide a possible route for using solar energy to convert H2S into valuable resources, but also sheds light on some challenging photochemical reactions such as CH4 activation and CO2 reduction.  相似文献   

13.
Overproduction of superoxide anion (O2.?), the primary cellular reactive oxygen species (ROS), is implicated in various human diseases. To reduce cellular oxidative stress caused by overproduction of superoxide, we developed a compound that reacts with O2.? to release a persulfide (RSSH), a type of reactive sulfur species related to the gasotransmitter hydrogen sulfide (H2S). Termed SOPD‐NAC , this persulfide donor reacts specifically with O2.?, decomposing to generate N‐acetyl cysteine (NAC) persulfide. To enhance persulfide delivery to cells, we conjugated the SOPD motif to a short, self‐assembling peptide (Bz‐CFFE‐NH2) to make a superoxide‐responsive, persulfide‐donating peptide ( SOPD‐Pep ). Both SOPD‐NAC and SOPD‐Pep delivered persulfides/H2S to H9C2 cardiomyocytes and lowered ROS levels as confirmed by quantitative in vitro fluorescence imaging studies. Additional in vitro studies on RAW 264.7 macrophages showed that SOPD‐Pep mitigated toxicity induced by phorbol 12‐myristate 13‐acetate (PMA) more effectively than SOPD‐NAC and several control compounds, including common H2S donors.  相似文献   

14.
3,5‐Bis(arylidene)‐4‐piperidone (BAP) derivatives display good antitumour and anti‐inflammatory activities because of their double α,β‐unsaturated ketone structural characteristics. If N‐benzenesulfonyl substituents are introduced into BAPs, the configuration of the BAPs would change significantly and their anti‐inflammatory activities should improve. Four N‐benzenesulfonyl BAPs, namely (3E,5E)‐1‐(4‐methylbenzenesulfonyl)‐3,5‐bis[4‐(trifluoromethyl)benzylidene]piperidin‐4‐one dichloromethane monosolvate, C28H21F6NO3S·CH2Cl2, ( 4 ), (3E,5E)‐1‐(4‐fluorobenzenesulfonyl)‐3,5‐bis[4‐(trifluoromethyl)benzylidene]piperidin‐4‐one, C27H18F7NO3S, ( 5 ), (3E,5E)‐1‐(4‐nitrobenzenesulfonyl)‐3,5‐bis[4‐(trifluoromethyl)benzylidene]piperidin‐4‐one, C27H18F6N2O5S, ( 6 ), and (3E,5E)‐1‐(4‐cyanobenzenesulfonyl)‐3,5‐bis[4‐(trifluoromethyl)benzylidene]piperidin‐4‐one dichloromethane monosolvate, C28H18F6N2O3S·CH2Cl2, ( 7 ), were prepared by Claisen–Schmidt condensation and N‐sulfonylation. They were characterized by NMR, FT–IR and HRMS (high resolution mass spectrometry). Single‐crystal structure analysis reveals that the two 4‐(trifluoromethyl)phenyl rings on both sides of the piperidone ring in ( 4 )–( 7 ) adopt an E stereochemistry of the olefinic double bonds. Molecules of both ( 4 ) and ( 6 ) are connected by hydrogen bonds into one‐dimensional chains. In ( 5 ) and ( 7 ), pairs of adjacent molecules embrace through intermolecular hydrogen bonds to form a bimolecular combination, which are further extended into a two‐dimensional sheet. The anti‐inflammatory activity data reveal that ( 4 )–( 7 ) significantly inhibit LPS‐induced interleukin (IL‐6) and tumour necrosis factor (TNF‐α) secretion. Most importantly, ( 6 ) and ( 7 ), with strong electron‐withdrawing substituents, display more potential inhibitory effects than ( 4 ) and ( 5 ).  相似文献   

15.
Hydrogen sulfide (H2S) is an endogenous gasotransmitter with potential therapeutic value for treating a range of disorders, such as ischemia-reperfusion injury resulting from a myocardial infarction or stroke. However, the medicinal delivery of H2S is hindered by its corrosive and toxic nature. In addition, small molecule H2S donors often generate other reactive and sulfur-containing species upon H2S release, leading to unwanted side effects. Here, we demonstrate that H2S release from biocompatible porous solids, namely metal–organic frameworks (MOFs), is a promising alternative strategy for H2S delivery under physiologically relevant conditions. In particular, through gas adsorption measurements and density functional theory calculations we establish that H2S binds strongly and reversibly within the tetrahedral pockets of the fumaric acid-derived framework MOF-801 and the mesaconic acid-derived framework Zr-mes, as well as the new itaconic acid-derived framework CORN-MOF-2. These features make all three frameworks among the best materials identified to date for the capture, storage, and delivery of H2S. In addition, these frameworks are non-toxic to HeLa cells and capable of releasing H2S under aqueous conditions, as confirmed by fluorescence assays. Last, a cellular ischemia-reperfusion injury model using H9c2 rat cardiomyoblast cells corroborates that H2S-loaded MOF-801 is capable of mitigating hypoxia-reoxygenation injury, likely due to the release of H2S. Overall, our findings suggest that H2S-loaded MOFs represent a new family of easily-handled solid sources of H2S that merit further investigation as therapeutic agents. In addition, our findings add Zr-mes and CORN-MOF-2 to the growing lexicon of biocompatible MOFs suitable for drug delivery.

Metal–organic frameworks enable the delivery of hydrogen sulfide (H2S), an endogenous gasotransmitter with potential therapeutic value for treating disorders such as ischemia-reperfusion injury.  相似文献   

16.
4‐Antipyrine [4‐amino‐1,5‐dimethyl‐2‐phenyl‐1H‐pyrazol‐3(2H)‐one] and its derivatives exhibit a range of biological activities, including analgesic, antibacterial and anti‐inflammatory, and new examples are always of potential interest and value. 2‐(4‐Chlorophenyl)‐N‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)acetamide, C19H18ClN3O2, (I), crystallizes with Z′ = 2 in the space group P, whereas its positional isomer 2‐(2‐chlorophenyl)‐N‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)acetamide, (II), crystallizes with Z′ = 1 in the space group C2/c; the molecules of (II) are disordered over two sets of atomic sites having occupancies of 0.6020 (18) and 0.3980 (18). The two independent molecules of (I) adopt different molecular conformations, as do the two disorder components in (II), where the 2‐chlorophenyl substituents adopt different orientations. The molecules of (I) are linked by a combination of N—H…O and C—H…O hydrogen bonds to form centrosymmetric four‐molecule aggregates, while those of (II) are linked by the same types of hydrogen bonds forming sheets. The related compound N‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)‐2‐(3‐methoxyphenyl)acetamide, C20H21N3O3, (III), is isomorphous with (I) but not strictly isostructural; again the two independent molecules adopt different molecular conformations, and the molecules are linked by N—H…O and C—H…O hydrogen bonds to form ribbons. Comparisons are made with some related structures, indicating that a hydrogen‐bonded R22(10) ring is the common structural motif.  相似文献   

17.
Herein we report the fabrication of an advanced sensor for the detection of hydrogen sulfide (H2S) at room temperature, using thin films of rare‐earth metal (RE)‐based metal–organic framework (MOF) with underlying fcu topology. This unique MOF‐based sensor is made via the in situ growth of fumarate‐based fcu ‐MOF (fum‐ fcu ‐MOF) thin film on a capacitive interdigitated electrode. The sensor showed a remarkable detection sensitivity for H2S at concentrations down to 100 ppb, with the lower detection limit around 5 ppb. The fum‐ fcu ‐MOF sensor exhibits a highly desirable detection selectivity towards H2S vs. CH4, NO2, H2, and C7H8 as well as an outstanding H2S sensing stability as compared to other reported MOFs.  相似文献   

18.
Hydrogen sulfide (H2S), an endogenous modulator of signaling processes, has potential as a therapeutic drug or in combination drug therapies. Due to its broad biological impacts and malodorous nature, there is considerable interest in vehicles capable of delivering H2S in a controlled manner. Herein, we report postpolymerization modification of polymers incorporating glycidyl methacrylate (GMA) units to form thiol‐triggered macromolecular H2S donors. By combining this approach with polymerization‐induced self‐assembly, this methodology allows the facile preparation of polymeric nanoparticulate donors with either spherical or worm‐like morphology. The thiol‐reactive epoxide functional groups in poly(GMA) were chemically transformed into acyl‐protected perthiol groups using a three‐step procedure throughout which both morphologies remained intact. The H2S releasing properties were subsequently studied, with both spherical and worm‐like nanoparticulate donors shown to successfully release H2S in the presence of the model thiol, l ‐cysteine. In addition, the donor polymers were shown to effectively increase H2S inside cells, upon exposure to biologically relevant endogenous thiol levels. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1982–1993  相似文献   

19.
The emergence of hydrogen sulfide (H2S) as an important signalling molecule in redox biology with therapeutic potential has triggered interest in generating this molecule within cells. One strategy that has been proposed is to use carbonyl sulfide (COS) as a surrogate for hydrogen sulfide. Small molecules that generate COS have been shown to produce hydrogen sulfide in the presence of carbonic anhydrase, a widely prevalent enzyme. However, other studies have indicated that COS may have biological effects which are distinct from H2S. Thus, it would be useful to develop tools to compare (and contrast) effects of COS and H2S. Here we report enzyme‐activated COS donors that are capable of inducing protein persulfidation, which is symptomatic of generation of hydrogen sulfide. The COS donors are also capable of mitigating stress induced by elevated reactive oxygen species. Together, our data suggests that the effects of COS parallel that of hydrogen sulfide, laying the foundation for further development of these donors as possible therapeutic agents.  相似文献   

20.
The thermodynamics of three pathways of the hydrogen sulfide decomposition reaction is considered. In the thermal process, the gas-phase dissociation of hydrogen sulfide yields hydrogen and diatomic singlet sulfur. Over sulfide catalysts, the reaction proceeds via the formation of disulfane (H2S2) as the key surface intermediate. This intermediate then decomposes to release hydrogen into the gas phase, and adsorbed singlet sulfur recombines into cyclooctasulfur. Over metal catalysts, H2S decomposes via dissociation into surface atoms followed by the formation of gaseous hydrogen and gaseous triplet disulfur. The last two pathways are thermodynamically forbidden in the gas phase and can take place at room temperature only on the surface of a catalyst. An alternative mechanism is suggested for hydrogen sulfide assimilation in the chemosynthesis process involving sulfur bacteria. To shift the hydrogen sulfide decomposition equilibrium toward the target product (hydrogen), it is suggested that the reaction should be conducted at room temperature as a three-phase process over a solid catalyst under a layer of a solvent that can dissolve hydrogen sulfide and sulfur. In this case, it is possible to attain an H2S conversion close to 100%. Therefore, hydrogen sulfide can be considered as an inexhaustible source of hydrogen, a valuable chemical and an environmentally friendly energetic product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号