首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《化学:亚洲杂志》2018,13(18):2606-2610
The transition‐metal‐catalyzed formal C−C bond insertion reaction of diazo compounds with monocarbonyl compounds is well established, but the related reaction of 1,3‐diketones instead gives C−H bond insertion products. Herein, we report a protocol for a gold‐catalyzed formal C−C bond insertion reaction of 2‐aryl‐2‐diazoesters with 1,3‐diketones, which provides efficient access to polycarbonyl compounds with an all‐carbon quaternary center. The aryl ester moiety plays a crucial role in the unusual chemoselectivity, and the addition of a Brønsted acid to the reaction mixture improves the yield of the C−C bond insertion product. A reaction mechanism involving cyclopropanation of a gold carbenoid with an enolate and ring‐opening of the resulting donor–acceptor‐type cyclopropane intermediate is proposed. This mechanism differs from that of the traditional Lewis‐acid‐catalyzed C−C bond insertion reaction of diazo compounds with monocarbonyl compounds, which involves a rearrangement of a zwitterion intermediate as a key step.  相似文献   

2.
Gold‐catalyzed C(sp)–C(sp2) and C(sp2)–C(sp2) cross‐coupling reactions are accomplished with aryldiazonium salts as the coupling partner. With the assistance of bpy ligand, gold(I) species were oxidized to gold(III) by diazonium without any external oxidants. Monitoring the reaction with NMR and ESI‐MS provided strong evidence for the nitrogen extrusion followed by AuIII reductive elimination as the key step.  相似文献   

3.
The Pd(OAc)2‐catalyzed Heck reaction of aryl diazonium salts with 2‐arylacrylates led to cis‐stilbenes with good to excellent stereoselectivity. The environmentally friendly protocol developed in this work features low palladium loading in technical‐grade methanol at room temperature under base‐, additive‐, and ligand‐free conditions. The same protocol applied to simple Heck coupling of aryl diazonium salts with methyl acrylate allows astonishingly low palladium loading, down to 0.005 mol %. The stereoselectivity experimentally observed for the synthesis of cis‐stilbenes has been rationalized by DFT calculations. Moreover, the role of methanol in promoting the reaction has been clarified by a computational study.  相似文献   

4.
1,2,3‐Triazole has become one of the most important heterocycles in contemporary medicinal chemistry. The development of the copper‐catalyzed Huisgen cycloaddition has allowed the efficient synthesis of 1‐substituted 1,2,3‐triazoles. However, only a few methods are available for the selective preparation of 2‐substituted 1,2,3‐triazole isomers. In this context, we decided to develop an efficient flow synthesis for the preparation of various 2‐aryl‐1,2,3‐triazoles. Our strategy involves a three‐step synthesis under continuous‐flow conditions that starts from the diazotization of anilines and subsequent reaction with malononitrile, followed by nucleophilic addition of amines, and finally employs a catalytic copper(II) cyclization. Potential safety hazards associated with the formation of reactive diazonium species have been addressed by inline quenching. The use of flow equipment allows reliable scale up processes with precise control of the reaction conditions. Synthesis of 2‐substituted 1,2,3‐triazoles has been achieved in good yields with excellent selectivities, thus providing a wide range of 1,2,3‐triazoles.  相似文献   

5.
Miniaturized planar back‐side contact transducers (BSC) with chemically modified gold surface have been utilized as electrochemical sensors. The electrodes have been functionalized by sequential immobilization of aryl diazonium salts or alkanethiols and short peptide Gly‐Gly‐His. The applicability of gold substrates modified with aryl diazonium salts in voltammetric detection of copper(II) ions in aqueous solutions has been studied. The combination of two fundamental elements of the solid‐state electrode, i.e. back‐side contact (BSC) gold sensor and self‐assembled monolayers, allowed one to obtain reliable miniaturized copper(II) ion sensors. It can have important future applications in environmental sensing or in implantable biodevices.  相似文献   

6.
Herein, we disclose the gold‐catalyzed 1,2‐diarylation of alkenes through the interplay of ligand‐enabled AuI/AuIII catalysis with the idiosyncratic π‐activation mode of gold complexes. Unlike the classical migratory‐insertion‐based approach to 1,2‐diarylation, the present approach not only circumvents the formation of direct Ar?Ar′ coupling and Heck‐type side products but more intriguingly demonstrates reactivity and selectivity complementary to those of previously known metal catalysis (Pd, Ni, or Cu). Detailed investigations to underpin the mechanistic scenario revealed oxidative addition of aryl iodides to an AuI complex to be the rate‐limiting step owing to the non‐innocent nature of the aryl alkene.  相似文献   

7.
Gold(I)‐chloride‐catalyzed synthesis of α‐sulfenylated carbonyl compounds from propargylic alcohols and aryl thiols showed a wide substrate scope with respect to both propargylic alcohols and aryl thiols. Primary and secondary aromatic propargylic alcohols generated α‐sulfenylated aldehydes and ketones in 60–97 % yield. Secondary aliphatic propargylic alcohols generated α‐sulfenylated ketones in yields of 47–71 %. Different gold sources and ligand effects were studied, and it was shown that gold(I) chloride gave the highest product yields. Experimental and theoretical studies demonstrated that the reaction proceeds in two separate steps. A sulfenylated allylic alcohol, generated by initial regioselective attack of the aryl thiol on the triple bond of the propargylic alcohol, was isolated, evaluated, and found to be an intermediate in the reaction. Deuterium labeling experiments showed that the protons from the propargylic alcohol and aryl thiol were transferred to the 3‐position, and that the hydride from the alcohol was transferred to the 2‐position of the product. Density functional theory (DFT) calculations showed that the observed regioselectivity of the aryl thiol attack towards the 2‐position of propargylic alcohol was determined by a low‐energy, five‐membered cyclic protodeauration transition state instead of the strained, four‐membered cyclic transition state found for attack at the 3‐position. Experimental data and DFT calculations supported that the second step of the reaction is initiated by protonation of the double bond of the sulfenylated allylic alcohol with a proton donor coordinated to gold(I) chloride. This in turn allows for a 1,2‐hydride shift, generating the final product of the reaction.  相似文献   

8.
A wide range of primary, secondary and tertiary propargylic alcohols undergo a Meyer–Schuster rearrangement to give enones at room temperature in the presence of a gold(I) catalyst and small quantities of MeOH or 4‐methoxyphenylboronic acid. The syntheses of the enone natural products isoegomaketone and daphenone were achieved using this reaction as the key step. The rearrangement of primary propargylic alcohols can readily be combined in a one‐pot procedure with the addition of a nucleophile to the resulting terminal enone, to give β‐aryl, β‐alkoxy, β‐amino or β‐sulfido ketones. Propargylic alcohols bearing an adjacent electron‐rich aryl group can also undergo silver‐catalyzed substitution of the alcohol with oxygen, nitrogen and carbon nucleophiles. This latter reaction was initially observed with a batch of gold catalyst that was probably contaminated with small quantities of silver salt.  相似文献   

9.
In sharp contrast to the gold‐catalyzed reactions of alkynes/allenes with nucleophiles, gold‐catalyzed oxidative cross‐couplings and especially C? H/C? H cross‐coupling have been under represented. By taking advantage of the unique redox property and carbophilic π acidity of gold, this work realizes the first gold‐catalyzed direct C(sp3)? H alkynylation of 1,3‐dicarbonyl compounds with terminal alkynes under mild reaction conditions, with subsequent cyclization and in situ oxidative alkynylation. A variety of terminal alkynes including aryl, heteroaryl, alkenyl, alkynyl, alkyl, and cyclopropyl alkynes all successfully participate in the domino reaction. The protocol offers a simple and region‐defined approach to 3‐alkynyl polysubstituted furans.  相似文献   

10.
A three‐component Pd‐catalyzed coupling of ynamides, aryl diazonium salts, and aryl boronic acids for the synthesis of novel triaryl‐substituted enamides is described. This transformation represents the first example of an umpolung regioselective unsymmetrical syn‐1,2‐diarylation/aryl‐olefination of ynamides. The aryl moieties of the diazonium salt (electrophile) and boronic acid (nucleophile) are explicitly incorporated in the electrophilic α‐ and nucleophilic β‐position, respectively, of the ynamide, resulting in a single isomer of the N‐bearing tetrasubstituted olefin. The scope is broad (68 examples), showing excellent functional‐group tolerance. DFT calculations substantiate the rationale of the mechanistic cycle and the regioselectivity. The chemoselectivity and synthetic potential of the enamide products were also studied.  相似文献   

11.
The gold‐catalyzed C? H annulation of anthranil derivatives with alkynes offers a facile, flexible, and atom‐economical one‐step route to unprotected 7‐acylindoles. An intermediate α‐imino gold carbene, generated by an intermolecular reaction, promotes ortho‐aryl C? H functionalization to afford the target products. The transformation proceeds with a broad range of substrates under mild conditions. Moreover, the obtained functionalized indole products represent a versatile platform for the construction of diverse indolyl frameworks.  相似文献   

12.
In situ generated aryl diazonium cations were synthesized in the electrochemical cell by reaction of the corresponding amines with NaNO2 in aqueous HCl. This paper reports a study of the formation of mixed layers from in situ generated aryl diazonium cations. Firstly, glassy carbon (GC) and gold electrode surfaces were modified with five single in situ generated aryl diazonium salts to obtain their corresponding reductive potential followed by the modification of GC and gold surfaces with eight binary mixed layers of in situ generated aryl diazonium salts. The difference between GC and gold surfaces in terms of in situ formation of two‐component aryl diazonium salt films was compared. The behavior of the mixed layers formed from in situ generated aryl diazonium salts relative to diazonium salts that were pre‐synthesized prior to surface modification was also investigated. Cyclic voltammetry and X‐ray photoelectron spectroscopy were used to characterize the resulting modified GC and gold surfaces. It is found that for some aryl diazonium salts the potential at which reductive adsorption is achieved on gold and GC surfaces is significantly different. For the eight sets of binary mixed layers, the species with more anodic potential are more difficult to attach to the both GC and gold surfaces. The behavior of the mixed layers formed from in situ generated aryl diazonium salts and the pre‐synthesized diazonium salts is similar; which emphasizes the advantage of the in situ approach without any apparent difference in behavior to the presynthesized diazonium salts.  相似文献   

13.
A simple formylation reaction of aryl halides, aryl triflates, and vinyl bromides under synergistic nickel‐ and organic‐dye‐mediated photoredox catalysis is reported. Distinct from widely used palladium‐catalyzed formylation processes, this reaction proceeds by a two‐step mechanistic sequence involving initial in situ generation of the diethoxymethyl radical from diethoxyacetic acid by a 4CzIPN‐mediated photoredox reaction. The formyl‐radical equivalent then undergoes nickel‐catalyzed substitution reactions with aryl halides and triflates and vinyl bromides to form the corresponding aldehyde products. Significantly, besides aryl bromides, less reactive aryl chlorides and triflates and vinyl halides serve as effective substrates for this process. Since the mild conditions involved in this reaction tolerate a plethora of functional groups, the process can be applied to the efficient preparation of diverse aromatic aldehydes.  相似文献   

14.
A palladium catalyzed C?H functionalization and consecutive β‐fluoride elimination reaction between indole heterocycles and fluorinated diazoalkanes is reported. This approach provides for the first time a facile method for the rapid synthesis of gem‐difluoro olefins using fluorinated diazoalkanes under mild reaction conditions. Cyclopropanation products were obtained when N‐arylated rather than N‐alkylated indoles were applied in this reaction. Mechanistic studies reveal the importance of the β‐fluoride elimination step in this transformation. This method presents a new concept for the simple and direct transfer of a 1‐aryl‐(2,2‐difluorovinyl) group to access gem‐difluoro olefins.  相似文献   

15.
An efficient copper‐promoted difluoromethylthiolation of aryl and heteroaryl diazonium salts is described. The reaction is conducted under mild reaction conditions and various functional groups were compatible. In addition, reactions of heteroaryl diazonium salts such as pyridyl, quinolinyl, benzothiazolyl, thiophenyl, carbazolyl, and pyrazolyl diazonium salts occurred smoothly to afford the medicinally important difluoromethylthiolated heteroarenes. Furthermore, a more practical one‐pot direct diazotization and difluoromethylthiolation protocol was developed, and it converts the aniline derivatives into difluoromethylthiolated arenes. The utility of the method is demonstrated by difluoromethylthiolation of a number of natural products and drug molecules.  相似文献   

16.
The reactivity of diazonium salts towards freestanding, photoluminescent silicon nanocrystals (SiNCs) is reported. It was found that SiNCs can be functionalized with aryl groups by direct reductive grafting of the diazonium salts. Furthermore, diazonium salts are efficient radical initiators for SiNC hydrosilylation. For this purpose, novel electron‐deficient diazonium salts, highly soluble in nonpolar solvents were synthesized. The SiNCs were functionalized with a variety of alkenes and alkynes at room temperature with short reaction times.  相似文献   

17.
A palladium‐catalyzed direct C‐arylation reaction of readily available cage carboranyllithium reagents with aryl halides has been developed for the first time. This method is applicable to a wide range of aryl halide substrates including aryl iodides, aryl bromides, and heteroaromatic halides.  相似文献   

18.
The synthesis of benzoates from aryl electrophiles and carbon monoxide is a prime example of a transition‐metal‐catalyzed carbonylation reaction which is widely applied in research and industrial processes. Such reactions proceed in the presence of Pd or Ni catalysts, suitable ligands, and stoichiometric bases. We have developed an alternative procedure that is free of any metal, ligand, and base. The method involves a redox reaction driven by visible light and catalyzed by eosin Y which affords alkyl benzoates from arene diazonium salts, carbon monoxide, and alcohols under mild conditions. Tertiary esters can also be prepared in high yields. DFT calculations and radical trapping experiments support a catalytic photoredox pathway without the requirement for sacrificial redox partners.  相似文献   

19.
A one‐pot three‐step sequence involving Rh‐catalyzed alkene hydroacylation, sulfide elimination and Rh‐catalyzed aryl boronic acid conjugate addition gave products of traceless chelation‐controlled hydroacylation employing alkyl aldehydes. The stereodefined β‐aryl ketones were obtained in good yields with excellent control of enantioselectivity. Good variation of all three reaction components is possible.  相似文献   

20.
Triazene‐substituted arylboronic esters were prepared readily from the corresponding aryl magnesium derivatives and shown to function as a new class of donor–acceptor‐substituted coupling reagents. The selective functionalization of these aromatic derivatives led to a wide variety of terphenyl derivatives in which the original bifunctional unit (often further substituted with another functional group) formed the central aromatic ring. The functionalized terphenyl derivatives were formed in two efficient cross‐coupling steps from the triazene‐substituted boronic esters: Suzuki cross‐coupling with an aryl halide was followed by BF3?OEt2‐induced palladium‐catalyzed coupling of the diazonium salt generated in situ from the triazene with an arylboronic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号