首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gas‐phase bond‐dissociation energies of a SO2–imidazolylidene leaving group of three gold(I) benzyl imidazolium sulfone complexes are reported (E0=46.6±1.7, 49.6±1.7, and 48.9±2.1 kcal mol?1). Although these energies are similar to each other, they are reproducibly distinguishable. The energy‐resolved collision‐induced dissociation experiments of the three [L]–gold(I) (L=ligand) carbene precursor complexes were performed by using a modified tandem mass spectrometer. The measurements quantitatively describe the structural and electronic effects a p‐methoxy substituent on the benzyl fragment, and trans [NHC] and [P] gold ligands, have towards gold carbene formation. Evidence for the formation of the electrophilic gold carbene in solution was obtained through the stoichiometric and catalytic cyclopropanation of olefins under thermal conditions. The observed cyclopropane yields are dependent on the rate of gold carbene formation, which in turn is influenced by the ligand and substituent. The donation of electron density to the carbene carbon by the p‐methoxy benzyl substituent and [NHC] ligand stabilizes the gold carbene intermediate and lowers the dissociation barrier. Through the careful comparison of gas‐phase and solution chemistry, the results suggest that even gas‐phase leaving‐group bond‐dissociation energy differences of 2–3 kcal mol?1 enormously affect the rate of gold carbene formation in solution, especially when there are competing reactions. The thermal decay of the gold carbene precursor complex was observed to follow first‐order kinetics, whereas cyclopropanation was found to follow pseudo‐first‐order kinetics. Density‐functional‐theory calculations at the M06‐L and BP86‐D3 levels of theory were used to confirm the observed gas‐phase reactivity and model the measured bond‐dissociation energies.  相似文献   

2.
N-Heterocyclic carbene (NHC) cyclometalated gold(III) complexes remain very scarce and therefore their photophysical properties remain currently underexplored. Moreover, gold(III) complexes emitting in the blue region of the electromagnetic spectrum are rare. In this work, a series of four phosphorescent gold(III) complexes was investigated bearing four different NHC monocyclometalated (C^C*)-type ligands and a dianionic (N^N)-type ancillary ligand ((N^N)=5,5’-(propane-2,2-diyl)bis(3-(trifluoromethyl)-1 H-pyrazole) (mepzH2)). The complexes exhibit strong phosphorescence when doped in poly(methyl methacrylate) (PMMA) at room temperature, which were systematically tuned from sky-blue [λPL=456 nm, CIE coordinates: (0.20, 034)] to green [λPL=516 nm, CIE coordinates: (0.31, 0.54)] by varying the monocyclometalated (C^C*) ligand framework. The complexes revealed high quantum efficiencies (ϕPL) of up to 43 % and excited-state lifetimes (τ0) between 15–266 μs. The radiative rate constant values found for these complexes (kr=103–104 s−1) are the highest found in comparison to previously known best-performing monocyclometalated gold(III) complexes. Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations of these complexes further lend support to the excited-state nature of these complexes. The calculations showed a significant contribution of the gold(III) metal center in the lowest unoccupied molecular orbitals (LUMOs) of up to 18 %, which was found to be unique for this class of cyclometalated gold(III) complexes. Additionally, organic light-emitting diodes (OLEDs) were fabricated by using a solution process to provide the first insight into the electroluminescent (EL) properties of this new class of gold(III) complexes.  相似文献   

3.
N-Heterocyclic carbene (NHC)-stabilized copper nanoparticles (NPs) were synthesized from an NHC–borane adduct and mesitylcopper(I) under thermal conditions (refluxing toluene for 2.5 h). NPs with a size distribution of 11.6±1.8 nm were obtained. The interaction between Cu NPs and NHC ligands was probed by X-ray photoelectron spectroscopy, which showed covalent binding of the NHC to the surface of the NPs. Mechanistic studies suggested that NHC–borane plays two roles: contributing to the reduction of [CuMes]2 to release Cu0 species and providing NHC ligands to stabilize the copper NPs.  相似文献   

4.
Three half-sandwichruthenium(II) complexes with pyridine/phenylene bridged NHC = E (NHC = N-heterocyclic carbene, E = S, Se) ligands [Ru(p-cymene)L](PF6)1–2 ( 1a–1c , L = ligand) were synthesized and characterized. All ruthenium complexes were fully characterized by 1H and 13C NMR spectra, mass spectrometry, and single-crystalX-ray diffraction methods. Moreover, the half-sandwich ruthenium complexes with NHC = E ligands showed highly catalytic activities towards to the tandem dehydrogenation of ammonia borane (AB) and hydrogenation of R–NO2 to R–NH2 at 353 K in water.  相似文献   

5.
A series of six‐ and seven‐membered expanded‐ring N‐heterocyclic carbene (er‐NHC) gold(I) complexes has been synthesized using different synthetic approaches. Complexes with weakly coordinating anions [(er‐NHC)AuX] (X?=BF4?, NTf2?, OTf?) were generated in solution. According to their 13C NMR spectra, the ionic character of the complexes increases in the order X?=Cl?<NTf2?<OTf?<BF4?. Additional factors for stabilization of the cationic complexes are expansion of the NHC ring and the attachment of bulky substituents at the nitrogen atoms. These er‐NHCs are bulkier ligands and stronger electron donors than conventional NHCs as well as phosphines and sulfides and provide more stabilization of [(L)Au+] cations. A comparative study has been carried out of the catalytic activities of five‐, six‐, and seven‐membered carbene complexes [(NHC)AuX], [(Ph3P)AuX], [(Me2S)AuX], and inorganic compounds of gold in model reactions of indole and benzofuran synthesis. It was found that increased ionic character of the complexes was correlated with increased catalytic activity in the cyclization reactions. As a result, we developed an unprecedentedly active monoligand cationic [(THD‐Dipp)Au]BF4 (1,3‐bis(2,6‐diisopropylphenyl)‐3,4,5,6‐tetrahydrodiazepin‐2‐ylidene gold(I) tetrafluoroborate) catalyst bearing seven‐membered‐ring carbene and bulky Dipp substituents. Quantitative yields of cyclized products were attained in several minutes at room temperature at 1 mol % catalyst loadings. The experimental observations were rationalized and fully supported by DFT calculations.  相似文献   

6.
Six new [RhBr(NHC)(cod)] (NHC = N‐heterocyclic carbene; cod = 1,5‐cyclooctadiene) type rhodium complexes ( 4–6 ) have been prepared by the reaction of [Rh(μ‐OMe)(cod)]2 with a series of corresponding imidazoli(in)ium bromides ( 1–3 ) bearing mesityl (Mes) or 2,4,6‐trimethylbenzyl (CH2Mes) substituents at N1 and N3 positions. They have been fully characterized by 1 H, 13 C and heteronuclear multiple quantum correlation NMR analyses, elemental analysis and mass spectroscopy. Complexes of type [(NHC)RhBr(CO)2] (NHC = imidazol‐2‐ylidene) ( 7b–9b ) were also synthesized to compare σ‐donor/π‐acceptor strength of NHC ligands. Transfer hydrogenation (TH) reaction of acetophenone has been comparatively studied by using complexes 4–6 as catalysts. The symmetrically CH2Mes‐substituted rhodium complex bearing a saturated NHC ligand ( 5a ) showed the highest catalytic activity for TH reaction. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Homobimetallic metallophilic interactions between copper, silver, and gold‐based [(NHC)MX]‐type complexes (NHC=N‐heterocyclic carbene, i.e, 1,3,4‐trimethyl‐4,5‐dihydro‐1H‐1,2,4‐triazol‐5‐ylidene; X=F, Cl, Br, I) were investigated by means of ab initio interaction energies, Ziegler–Rauk‐type energy‐decomposition analysis, the natural orbital for chemical valence (NOCV) framework, and the noncovalent interaction (NCI) index. It was found that the dimers of these complexes predominantly adopt a head‐to‐tail arrangement with typical M ??? M distance of 3.04–3.64 Å, in good agreement with the experimental X‐ray structure determined for [{(NHC)AuCl}2], which has an Au ??? Au distance of 3.33 Å. The interaction energies between silver‐ and gold‐based monomers are calculated to be about ?25 kcal mol?1, whereas that for the Cu congener is significantly lower (?19.7 kcal mol?1). With the inclusion of thermal and solvent contributions, both of which are destabilizing, by about 15 and 8 kcal mol?1, respectively, an equilibrium process is predicted for the formation of dimer complexes. Energy‐decomposition analysis revealed a dominant electrostatic contribution to the interaction energy, besides significantly stabilizing dispersion and orbital interactions. This electrostatic contribution is rationalized by NHC(δ+) ??? halogen(δ?) interactions between monomers, as demonstrated by electrostatic potentials and derived charges. The dominant NOCV orbital indicates weakening of the π backdonation in the monomers on dimer formation, whereas the second most dominant NOCV represents an electron‐density deformation according to the formation of a very weak M ??? M bond. One of the characteristic signals found in the reduced density gradient versus electron density diagram corresponds to the noncovalent interactions between the metal centers of the monomers in the NCI plots, which is the manifestation of metallophilic interaction.  相似文献   

8.
The synthesis and characterisation of a homologous series of monodentate benzimidazolium salts, 14 and their mononuclear silver(I)–NHC (where NHC = N-heterocyclic carbene) complexes, 58, are reported. The benzimidazolium salts were prepared from the N-alkylation of 1-methyl-benzimidazole with alkyl halides of varying carbon chain lengths. The mono silver(I)-NHC complexes, 58, were prepared by the reaction of the benzimidazolium salts with Ag2O. All the synthesised compounds were fully characterised by 1H-nuclear magnetic resonance (1H-NMR), 13C-NMR and fourier-transform infrared (FTIR) spectroscopy. The molecular structures of compounds 3·PF6, 4·PF6, 7 and 8 were elucidated through single-crystal X-ray diffraction analyses. We postulate that the attachment of long alkyl chains to the heterocyclic core of 1-methyl benzimidazole could induce mesophase formation. The liquid crystalline behaviour of the benzimidazolium salts was investigated by polarised optical microscope and differential scanning calorimetry. Salts 3 and 4 were found to be thermotropic liquid crystals which exhibited a smectic A phase. However, upon complexation with silver(I) ions, all the Ag(I)–NHC complexes are found to be non-mesogenic.  相似文献   

9.
Salts of a copper and a silver carbene complex were prepared from dimesityl diazomethane, made possible by the steric shielding of the N‐heterocyclic carbene (NHC) ancillary ligand IPr**. The mint‐green complex [IPr**Ag=CMes2]+[NTf2]? is the first isolated silver carbene complex without heteroatom donor substituents. Single‐crystal X‐ray diffraction provides evidence for a predominant carbenoid character, and supports the postulation of such reactive species as intermediates in silver‐catalyzed C? H activation reactions. The greenish yellow copper carbene complex [IPr**Cu=CMes2]+[NTf2]? has spectroscopic properties in between the isostructural silver complex and the already reported emerald green gold carbene complex. A comparison in the Group 11 series indicates that relativistic effects are responsible for the strong σ bond and the significant π back‐bonding in the gold carbene moiety.  相似文献   

10.
The synthesis and full characterization of new air-stable AgI and CuI complexes bearing structurally bulky expanded-ring N-heterocyclic carbene (erNHC) ligands is presented. The condensation of protonated NHC salts with Ag2O afforded a collection of AgI complexes, and their first use as ligand transfer reagents led to novel isostructural CuI or AuI complexes. In situ deprotonation of the NHC salts in the presence of a copper(I) source, provides a library of new CuI complexes. The solid-state structures feature large N-CNHC-N angles (118–128°) and almost identical angles between the aryl groups on the nitrogen atoms and the plane of the N-C-N unit of the carbene (i.e. torsion angles close to 0°). Among the steric parameters, the percent buried volume (%Vbur) values span easily in the 50–57 % range, and that one of (9-Dipp)CuBr complex (%Vbur=57.5) overcomes to other known erNHC–metal complexes reported to date. Preliminary catalytic experiments in the copper-catalyzed coupling between N-tosylhydrazone and phenylacetylene, afforded 76–93 % product at the 0.5–2.5 mol % catalyst loading, proving the stability of CuI erNHC complexes at elevated temperatures (100 °C).  相似文献   

11.
The aurophilicity exhibited by AuI complexes depends strongly on the nature of the supporting ligands present and the length of the Au–element (Au—E) bond may be used as a measure of the donor–acceptor properties of the coordinated ligands. A binuclear iron–gold complex, [1,3‐bis(2,6‐diisopropylphenyl)imidazol‐2‐ylidene‐2κC2]dicarbonyl‐1κ2C‐(1η5‐cyclopentadienyl)gold(I)iron(II)(AuFe) benzene trisolvate, [AuFe(C5H5)(C27H36N2)(CO)2]·3C6H6, was prepared by reaction of K[CpFe(CO)2] (Cp is cyclopentadienyl) with (NHC)AuCl [NHC = 1,3‐bis(2,6‐diisopropylphenyl)imidazol‐2‐ylidene]. In addition to the binuclear complex, the asymmetric unit contains three benzene solvent molecules. This is the first example of a two‐coordinated Au atom bonded to an Fe and a C atom of an N‐heterocyclic carbene.  相似文献   

12.
In recent years, the use of copper N‐heterocyclic carbene (NHC) complexes has expanded to fields besides catalysis, namely medicinal chemistry and luminescence applications. In the latter case, multinuclear copper NHC compounds have attracted interest, however, the number of these complexes in the literature is still quite limited. Bis[μ‐1,3‐bis(3‐tert‐butylimidazolin‐2‐yliden‐1‐yl)pyridine]‐1κ4C2,N:N,C2′;2κ4C2,N:N,C2′‐dicopper(I) bis(hexafluoridophosphate), [Cu2(C19H25N5)2](PF6)2, is a dimeric copper(I) complex bridged by two CNC, i.e. bis(N‐heterocyclic carbene)pyridine, ligands. Each CuI atom is almost linearly coordinated by two NHC ligands and interactions are observed between the pyridine N atoms and the metal centres, while no cuprophilic interactions were observed. Very strong absorption bands are evident in the UV–Vis spectrum at 236 and 274 nm, and an emission band is observed at 450 nm. The reported complex is a new example of a multinuclear copper NHC complex and a member of a compound class which has only rarely been reported.  相似文献   

13.
《European Polymer Journal》2006,42(8):1786-1797
New aliphatic–aromatic α,ω-diols containing sulfur in aliphatic chain: 4,4′-(ethane-1,2-diyl)bis(benzenethioethanol) [EBTE], 4,4′-(ethane-1,2-diyl)bis(benzenethiopropanol) [EBTP], 4,4′-(ethane-1,2-diyl)bis(benzenethiohexanol) [EBTH], 4,4′-(ethane-1,2-diyl)bis(benzenethiodecanol) [EBTD], and 4,4′-(ethane-1,2-diyl)bis(benzenethioundecanol) [EBTU] were prepared by the condensation reaction of 4,4′-(ethane-1,2-diyl)bis(benzenethiol) with suitable halogen alcohols in aqueous sodium hydroxide solution. Thermoplastic nonsegmented polyurethanes containing sulfide linkages were synthesized from these diols, and hexane-1,6-diyl diisocyanate (HDI) or 4,4′-methylenediphenyl diisocyanate (MDI) by solution and melt polymerization. The reaction was carried out at 1:1 or 1.05:1 molar ratios of isocyanate and hydroxy groups in the presence of dibutyltin dilaurate as a catalyst.The structures of the diols were determined by using elemental analysis, FTIR and 1H NMR spectroscopy, and X-ray diffraction analysis. Thermal characteristics of the diols were determined by using differential scanning calorimetry (DSC). The polymers were studied to describe their structures and physicochemical, thermal (by DSC and thermogravimetric analysis) and tensile properties as well as Shore A/D hardness.All the polyurethanes possessed partially crystalline structures. Their melting temperatures were in the range of 94–179 °C (HDI) and 105–207 °C (MDI). The MDI-based polyurethanes showed higher tensile strengths, up to ∼50 MPa.  相似文献   

14.
We report herein a detailed study of the use of porphyrins fused to imidazolium salts as precursors of N‐heterocyclic carbene ligands 1 M . Rhodium(I) complexes 6 M – 9 M were prepared by using 1 M ligands with different metal cations in the inner core of the porphyrin (M=NiII, ZnII, MnIII, AlIII, 2H). The electronic properties of the corresponding N‐heterocyclic carbene ligands were investigated by monitoring the spectroscopic changes occurring in the cod and CO ancillary ligands of [( 1 M )Rh(cod)Cl] and [( 1 M )Rh(CO)2Cl] complexes (cod=1,5‐cyclooctadiene). Porphyrin–NHC ligands 1 M with a trivalent metal cation such as MnIII and AlIII are overall poorer electron donors than porphyrin–NHC ligands with no metal cation or incorporating a divalent metal cation such as NiII and ZnII. Imidazolium salts 3 M (M=Ni, Zn, Mn, 2H) have also been used as NHC precursors to catalyze the ring‐opening polymerization of L ‐lactide. The results clearly show that the inner metal of the porphyrin has an important effect on the reactivity of the outer carbene.  相似文献   

15.
This report describes the synthesis and characterization of novel N‐heterocyclic carbene (NHC)–gold(I) complexes and their bioconjugation to the CCRF‐CEM‐leukemia‐specific aptamer sgc8c. Successful bioconjugation was confirmed by the use of fluorescent tags on both the NHC–AuI complex and the aptamer. Cell‐viability assays indicated that the NHC–AuI–aptamer conjugate was more cytotoxic than the NHC–gold complex alone. A combination of flow cytometry, confocal microscopy, and cell‐viability assays provided clear evidence that the NHC–AuI–aptamer conjugate was selective for targeted CCRF‐CEM leukemia cells.  相似文献   

16.
In the last decade, major advances have been made in homogeneous gold catalysis. However, AuI/AuIII catalytic cycle remains much less explored due to the reluctance of AuI to undergo oxidative addition and the stability of the AuIII intermediate. Herein, we report activation of aryl halides at gold(I) enabled by NHC (NHC=N-heterocyclic carbene) ligands through the development of a new class of L-shaped heterobidentate ImPy (ImPy=imidazo[1,5-a]pyridin-3-ylidene) N,C ligands that feature hemilabile character of the amino group in combination with strong σ-donation of the carbene center in a rigid conformation, imposed by the ligand architecture. Detailed characterization and control studies reveal key ligand features for AuI/AuIII redox cycle, wherein the hemilabile nitrogen is placed at the coordinating position of a rigid framework. Given the tremendous significance of homogeneous gold catalysis, we anticipate that this ligand platform will find widespread application.  相似文献   

17.
Iridium(III) complexes with N‐heterocyclic (NHC) ligands including fac‐Ir(pmb)3 (1), mer‐Ir(pmb)3 (2), (pmb)2Ir(acac) (3), mer‐Ir(pypi)3 (4), and fac‐Ir(pypi)3 (5) [pmb = 1‐phenyl‐3H‐benzimidazolin‐2‐ylidene, acac = acetoylacetonate, pypi = 1‐phenyl‐5H‐benzimidazolin‐2‐ylidene; fac = facial, mer = meridional] were investigated theoretically. The geometry structures of 1–5 in the ground and excited state were optimized with restricted and unrestricted DFT (density functional theory) methods, respectively (LANL2DZ for Ir atom and 6‐31G for other atoms). The HOMOs (highest occupied molecular orbitals) of 1–3 are composed of d(Ir) and π(phenyl), while those of 4 and 5 are contributed by d(Ir) and π(carbene). The LUMOs (lowest unoccupied molecular orbitals) of 1, 2, 4, and 5 are localized on carbene, but that of 3 is localized on acac. The calculated lowest‐lying absorptions with TD‐DFT method based on Perdew‐Burke‐Erzenrhof (PBE) functional of 1 (310 nm), 2 (332 nm), and 3 (347 nm) have MLcarbeneCT/ILphenyl→carbeneCT (MLCT = metal‐to‐ligand charge transfer; ILCT = intraligand charge transfer) transition characters, whereas those of 4 (385 nm) and 5 (389 nm) are assigned to MLcarbeneCT/ILcarbene→carbeneCT transitions. The phosphorescences calculated by TD‐DFT method with PBE0 functional of 1 (386 nm) and 2 (388 nm) originate from 3MLcarbeneCT/3ILphenyl→carbeneCT excited states, but those of 4 (575 nm) and 5 (578 nm) come from 3MLcarbeneCT/3ILcarbene→carbeneCT excited states. The calculated results showed that the carbene and phenyl groups act as two independent chromophores in transition processes. Compared with 1 and 2, the absorptions of 4 and 5 are red‐shifted by increasing the effective π‐conjugation groups near the Ccarbene atom. We predicated that (pmb)2Ir(acac) is nonemissive, because the LUMO of 3 is contributed by the nonemissive acac ligand. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

18.
From the reaction of 1H‐imidazole ( 1a ), 4,5‐dichloro‐1H‐imidazole ( 1b ) and 1H‐benzimidazole ( 1c ) with p‐cyanobenzyl bromide ( 2 ), symmetrically substituted N‐heterocyclic carbene (NHC) [( 3a–c )] precursors, 1‐methylimidazole ( 5a ), 4,5‐dichloro‐1‐methylimidazole ( 5b ) and 1‐methylbenzimidazole ( 5c ) with benzyl bromide ( 6 ), non‐symmetrically substituted N‐heterocyclic carbene (NHC) [( 7a–c )] precursors were synthesized. These NHC? precursors were then reacted with silver(I) acetate to yield the NHC‐silver complexes [1,3‐bis(4‐cyanobenzyl)imidazole‐2‐ylidene] silver(I) acetate ( 4a ), [4,5‐dichloro‐1,3‐bis(4‐cyanobenzyl)imidazole‐2‐ylidene] silver(I) acetate ( 4b ), [1,3‐bis(4‐cyanobenzyl)benzimidazole‐2‐ylidene] silver(I) acetate ( 4c ), (1‐methyl‐3‐benzylimidazole‐2‐ylidene) silver(I) acetate ( 8a ), (4,5‐dichloro‐1‐methyl‐3‐benzylimidazole‐2‐ylidene) silver(I) acetate ( 8b ) and (1‐methyl‐3‐benzylbenzimidazole‐2‐ylidene) silver(I) acetate ( 8c ) respectively. The four NHC‐precursors 3a–c, 7c and four NHC–silver complexes 4a–c and 8c were characterized by single crystal X‐ray diffraction. The preliminary antibacterial activity of all the compounds was studied against Gram‐negative bacteria Escherichia coli, and Gram‐positive bacteria Staphylococcus aureus using the qualitative Kirby‐Bauer disc‐diffusion method. All NHC–silver complexes exhibited medium to high antibacterial activity with areas of clearance ranging from 4 to 12 mm at the highest amount used, while the NHC‐precursors showed significantly lower activity. In addition, all NHC–silver complexes underwent preliminary cytotoxicity tests on the human renal‐cancer cell line Caki‐1 and showed medium to high cytotoxicity with IC50 values ranging from 53 ( ± 8) to 3.2 ( ± 0.6) µM. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Bis(NHC)ruthenium(II)–porphyrin complexes were designed, synthesized, and characterized. Owing to the strong donor strength of axial NHC ligands in stabilizing the trans M?CRR′/M?NR moiety, these complexes showed unprecedently high catalytic activity towards alkene cyclopropanation, carbene C? H, N? H, S? H, and O? H insertion, alkene aziridination, and nitrene C? H insertion with turnover frequencies up to 1950 min?1. The use of chiral [Ru(D4‐Por)(BIMe)2] ( 1 g ) as a catalyst led to highly enantioselective carbene/nitrene transfer and insertion reactions with up to 98 % ee. Carbene modification of the N terminus of peptides at 37 °C was possible. DFT calculations revealed that the trans axial NHC ligand facilitates the decomposition of diazo compounds by stabilizing the metal–carbene reaction intermediate.  相似文献   

20.
Salts of meta‐xylyl‐linked N‐ethyl/n‐butyl/benzyl‐substituted bis‐benzimidazolium having hexafluorophosphate counterions have been synthesized. The corresponding binuclear Ag(I)‐N‐heterocyclic carbene complexes were prepared by the reaction of Ag2O. The N‐heterocyclic carbene (NHC) ligand precursor 7 and Ag(I)–NHC complexes 10 and 11 have been structurally characterized by single‐crystal X‐ray diffraction technique. All of the reported compounds have been tested for their anticancer activity using human colorectal (HCT 116) cancer cell lines. Sterically varied benzimidazolium salts displayed significant activity against HCT 116 cell line, yielding IC50 values in the range 0.1–19.4 µ m , while Ag(I)–carbene complexes showed exceptionally good activity (0.2–1.3 µ m ) against tested cancer cell lines. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号