首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rational engineering and assimilation of diverse chemo‐ and biocatalytic functionalities in a single nanostructure is highly desired for efficient multistep chemical reactions but has so far remained elusive. Here, we design and synthesize multimodal catalytic nanoreactors (MCNRs) based on a mesoporous metal‐organic framework (MOF). The MCNRs consist of customizable metal nanocrystals and stably anchored enzymes in the mesopores, as well as coordinatively unsaturated cationic metal MOF nodes, all within a single nanoreactor space. The highly intimate and diverse catalytic mesoporous microenvironments and facile accessibility to the active site in the MCNR enables the cooperative and synergistic participation from different chemo‐ and biocatalytic components. This was shown by one‐pot multistep cascade reactions involving a heterogeneous catalytic nitroaldol reaction followed by a [Pd/lipase]‐catalyzed chemoenzymatic dynamic kinetic resolution to yield optically pure (>99 % ee) nitroalcohol derivatives in quantitative yields.  相似文献   

2.
Metal–incorporated composite carbon materials have engendered great progress in the fields of catalysis, energy storage and material science because of their size and chemical and physical properties. In this study, a modern technique was applied for the development of multi metal–carbon nanoreactors (MCNRs) from a pristine carbon cage (CC) using template method with nano silica ball (NSB), pyrolysis fuel oil (PFO) and metal nanocrystals such as gold, copper, nickel, potassium and manganese. The newly prepared Au, Cu, Ni, K and Mn deposited carbon nanoreactors were fully characterized by various analytical techniques. Due to their easy fabrication protocols and broad potential applications, the MCNRs were used successfully for the chemisorptions of hydrogen and ethylene gases alongside the solvent–free heterogeneous catalytic oxidation of a secondary alcohol. The MCNRs have exhibited dynamic adsorption performance and excellent catalytic activity.  相似文献   

3.
The exploitation of new and active earth‐abundant metal catalysts is critical for sustainable chemical production. Herein, we demonstrate the design of highly efficient, robust, and reusable ZnII‐bipyridine‐based metal–organic framework (MOF) catalysts for the intramolecular hydroamination of o‐alkynylanilines to indoles. Under similar conditions homogeneous catalytic systems mainly provide hydrolysate. Our results prove that MOFs support unique internal environments that can affect the direction of chemical reactions. The ZnII‐catalyzed hydroamination reaction can be conducted without additional ligands, base, or acid, and is thus a very clean reaction system with regard to its environmental impact.  相似文献   

4.
We report the first study of a gas‐phase reaction catalyzed by highly dispersed sites at the metal nodes of a crystalline metal–organic framework (MOF). Specifically, CuRhBTC (BTC3?=benzenetricarboxylate) exhibited hydrogenation activity, while other isostructural monometallic and bimetallic MOFs did not. Our multi‐technique characterization identifies the oxidation state of Rh in CuRhBTC as +2, which is a Rh oxidation state that has not previously been observed for crystalline MOF metal nodes. These Rh2+ sites are active for the catalytic hydrogenation of propylene to propane at room temperature, and the MOF structure stabilizes the Rh2+ oxidation state under reaction conditions. Density functional theory calculations suggest a mechanism in which hydrogen dissociation and propylene adsorption occur at the Rh2+ sites. The ability to tailor the geometry and ensemble size of the metal nodes in MOFs allows for unprecedented control of the active sites and could lead to significant advances in rational catalyst design.  相似文献   

5.
The development of porous composite materials is of great significance for their potentially improved performance over those of individual components and extensive applications in separation, energy storage, and heterogeneous catalysis. Now mesoporous metal–organic frameworks (MOFs) with macroporous melamine foam (MF) have been integrated using a one‐pot process, generating a series of MOF/MF composite materials with preserved crystallinity, hierarchical porosity, and increased stability over that of melamine foam. The MOF nanocrystals were threaded by the melamine foam networks, resembling a ball‐and‐stick model overall. The resulting MOF/MF composite materials were employed as an effective heterogeneous catalyst for the epoxidation of cholesteryl esters. Combining the advantages of interpenetrative mesoporous and macroporous structures, the MOF/melamine foam composite has higher dispersibility and more accessibility of catalytic sites, exhibiting excellent catalytic performance.  相似文献   

6.
Solid‐state crystallization achieves selective confinement of metal–organic framework (MOF) nanocrystals within mesoporous materials, thereby rendering active sites more accessible compared to the bulk‐MOF and enhancing the chemical and mechanical stability of MOF nanocrystals. (Zr)UiO‐66(NH2)/SiO2 hybrid materials were tested as efficient and reusable heterogeneous catalysts for the synthesis of steroid derivatives, outperforming the bulk (Zr)UiO‐66(NH2) MOF. A clear correlation between the catalytic activity of the dispersed Zr sites present in the confined MOF, and the loading of the mesoporous SiO2, is demonstrated for steroid transformations.  相似文献   

7.
Frustrated Lewis pairs (FLPs) consist of sterically hindered Lewis acids and Lewis bases, which provide high catalytic activity towards non‐metal‐mediated activation of “inert” small molecules, including CO2 among others. One critical issue of homogeneous FLPs, however, is their instability upon recycling, leading to catalytic deactivation. Herein, we provide a solution to this issue by incorporating a bulky Lewis acid‐functionalized ligand into a water‐tolerant metal‐organic framework (MOF), named SION‐105 , and employing Lewis basic diamine substrates for the in situ formation of FLPs within the MOF. Using CO2 as a C1‐feedstock, this combination allows for the efficient transformation of a variety of diamine substrates into benzimidazoles. SION‐105 can be easily recycled by washing with MeOH and reused multiple times without losing its identity and catalytic activity, highlighting the advantage of the MOF approach in FLP chemistry.  相似文献   

8.
Chemo-enzymatic cascade processes are invaluable due to their ability to rapidly construct high-value products from available feedstock chemicals in a one-pot relay manner. However, they have proven to be challenging because of the mutual inactivation of both catalysts. A conceptually novel strategy based on Pickering interfacial catalysis (PIC) is proposed here to address this challenge. This study aimed to construct a protein-stabilized Pickering system for biphasic cascade catalysis, enabled by phosphorylated zein nanoparticles (ZCPOPs) immobilized in gold nanoparticles (Au NCs). Ultra-small Au NCs, 1–2 nm in diameter, were integrated into ZCPOPs at room temperature. Then, the as-synthesized ZCPOPs–Au NCs were used to stabilize the oil-in-water (o/w) Pickering emulsion. Besides their excellent catalytic activity and recycling ability in a variety of oil phases, ZCPOPs–Au NCs possess unpredictable catalytic activity and exhibit mimicking properties of horseradish peroxidase. Particularly, the cascade reaction is well achieved using a metal catalyst and a biocatalyst at the oil–water interface. The result showed that such a combination of chemo- and biocatalysis improved the catalytic yield more than two times compared with that of sole metal catalysis. This study opened a new avenue to design nanomaterials using the combination of chemo- and biocatalysis in a Pickering emulsion system for multistep syntheses.

A robust chemo- and biocatalytic cascade PIC with a recovery catalyst and a separation product was developed. The results groundbreakingly highlighted the preliminary applications of artificial enzymes and bio-enzymes in a one-pot cascade PIC.  相似文献   

9.
Frustrated Lewis pairs (FLPs) have recently been advanced as efficient metal‐free catalysts for catalytic hydrogenation, but their performance in chemoselective hydrogenation, particularly in heterogeneous systems, has not yet been achieved. Herein, we demonstrate that, via tailoring the pore environment within metal–organic frameworks (MOFs), FLPs not only can be stabilized but also can develop interesting performance in the chemoselective hydrogenation of α,β‐unsaturated organic compounds, which cannot be achieved with FLPs in a homogeneous system. Using hydrogen gas under moderate pressure, the FLP anchored within a MOF that features open metal sites and hydroxy groups on the pore walls can serve as a highly efficient heterogeneous catalyst to selectively reduce the imine bond in α,β‐unsaturated imine substrates to afford unsaturated amine compounds.  相似文献   

10.
The reported metal–organic framework (MOF) catalyst realizes CO2 to methanol transformation under ambient conditions. The MOF is one rare example containing metal‐free N‐heterocyclic carbene (NHC) moieties, which are installed using an in situ generation strategy involving the incorporation of an imidazolium bromide based linker into the MOF by postsynthetic ligand exchange. Importantly, the resultant NHC‐functionalized MOF is the first catalyst capable of performing quantitative hydrogen transfer from silanes to CO2, thus achieving quantitative (>99 %) methanol yield. Density‐functional theory calculations indicate the high catalytic activity of the NHC sites in MOFs are attributed to the decreased reaction barrier of a reaction route involving the formation of an NHC‐silane adduct. In addition, the MOF‐immobilized NHC catalyst shows enhanced stability for up to eight cycles without base activation, as well as high selectivity towards the desired silyl methoxide product.  相似文献   

11.
An enzyme formulation using customized enzyme activators (metal ions) to directly construct metal–organic frameworks (MOFs) as enzyme protective carriers is presented. These MOF carriers can also serve as the disintegrating agents to simultaneously release enzymes and their activators during biocatalysis with boosted activities. This highly efficient enzyme preparation combines enzyme immobilization (enhanced stability, easy operation) and homogeneous biocatalysis (fast diffusion, high activity). The MOF serves as an ion pump that continuously provides metal ion activators that greatly promote the enzymatic activities (up to 251 %). This MOF–enzyme composite demonstrated an excellent protective effect against various perturbation environments. A mechanistic investigation revealed that the spontaneous activator/enzyme release and ion pumping enable enzymes to sufficiently interact with their activators owing to the proximity effects, leading to a boost in biocatalytic performance.  相似文献   

12.
An enzyme formulation using customized enzyme activators (metal ions) to directly construct metal–organic frameworks (MOFs) as enzyme protective carriers is presented. These MOF carriers can also serve as the disintegrating agents to simultaneously release enzymes and their activators during biocatalysis with boosted activities. This highly efficient enzyme preparation combines enzyme immobilization (enhanced stability, easy operation) and homogeneous biocatalysis (fast diffusion, high activity). The MOF serves as an ion pump that continuously provides metal ion activators that greatly promote the enzymatic activities (up to 251 %). This MOF–enzyme composite demonstrated an excellent protective effect against various perturbation environments. A mechanistic investigation revealed that the spontaneous activator/enzyme release and ion pumping enable enzymes to sufficiently interact with their activators owing to the proximity effects, leading to a boost in biocatalytic performance.  相似文献   

13.
In this work, a series of metal–organic framework (MOF)-derived CoPd nanoalloys have been prepared. The nanocatalysts exhibited excellent activities in the hydrogenation of nitroarenes and alkenes in green solvent (ethanol/water) under mild conditions (H2 balloon, room temperature). Using ZIF-67 as template for both carbon matrix and cobalt precursor coating with a mesoporous SiO2 layer, the catalyst CoPd/NC@SiO2 was smoothly constructed. Catalytic results revealed a synergistic effect between Co and Pd components in the hydrogenation process due to the enhanced electron density. The mesoporous SiO2 shell effectively prevented the sintering of hollow carbon and metal NPs at high temperature, furnishing the well-dispersed nanoalloy catalysts and better catalytic performance. Moreover, the catalyst was durable and showed negligible activity decay in recycling and scale-up experiments, providing a mild and highly efficient way to access amines and arenes.  相似文献   

14.
We propose a facile room‐temperature synthesis of a metal–organic framework (MOF) with a bimodal mesoporous structure (3.9 and 17‐28 nm) in an ionic liquid (IL)/ethylene glycol (EG) mixture. The X‐ray diffraction analysis reveals that MOF formation can be efficiently promoted by the presence of the EG/IL interface at room temperature. The MOFs with mesoporous networks are characterized by SEM and TEM. The formation mechanism of the mesoporous MOF in EG/IL mixture is investigated. It is proposed that the EG nanodroplets in the IL work as templates for the formation of the large mesopores. The as‐synthesized mesoporous metal–organic framework is an effective and reusable heterogeneous catalyst to catalyze the aerobic oxidation of benzylic alcohols.  相似文献   

15.
金属-有机骨架材料及其在催化反应中的应用   总被引:2,自引:0,他引:2  
李庆远  季生福  郝志谋 《化学进展》2012,24(8):1506-1518
金属-有机骨架(metal-organic frameworks, MOFs)材料是由金属离子和有机配体通过自组装而成的具有多孔结构的特殊晶体材料。由于其种类的多样性、孔道的可调性和结构的易功能化,已在气体的吸附和分离、催化、磁学、生物医学等领域表现出了诱人的应用前景。本文介绍了MOFs材料的类型和常用的合成方法,综述了近年来MOFs材料在催化领域的应用,特别是以MOFs材料中骨架金属作为活性中心、骨架有机配体作为活性中心和负载催化活性组分的催化反应,并对MOFs材料的催化应用趋势做了展望,以期对MOFs材料的催化性能有比较全面的认识。  相似文献   

16.
We first studied the reactivity of H2O vapor in metal–organic frameworks (MOFs) with Pt nanocrystals (NCs) through the water–gas shift (WGS) reaction. A water‐stable MOF, UiO‐66, serves as a highly effective support material for the WGS reaction compared with ZrO2. The origin of the high catalytic performance was investigated using in situ IR spectroscopy. In addition, from a comparison of the catalytic activities of Pt on UiO‐66, where Pt NCs are located on the surface of UiO‐66 and Pt@UiO‐66, where Pt NCs are coated with UiO‐66, we found that the competitive effects of H2O condensation and diffusion in the UiO‐66 play important roles in the catalytic activity of Pt NCs. A thinner UiO‐66 coating further enhanced the WGS reaction activity of Pt NCs by minimizing the negative effect of slow H2O diffusion in UiO‐66.  相似文献   

17.
18.
The combined use of a metal‐complex catalyst and an enzyme is attractive, but typically results in mutual inactivation. A rhodium (Rh) complex immobilized in a bipyridine‐based periodic mesoporous organosilica (BPy‐PMO) shows high catalytic activity during transfer hydrogenation, even in the presence of bovine serum albumin (BSA), while a homogeneous Rh complex exhibits reduced activity due to direct interaction with BSA. The use of a smaller protein or an amino acid revealed a clear size‐sieving effect of the BPy‐PMO that protected the Rh catalyst from direct interactions. A combination of Rh‐immobilized BPy‐PMO and an enzyme (horse liver alcohol dehydrogenase; HLADH) promoted sequential reactions involving the transfer hydrogenation of NAD+ to give NADH followed by the asymmetric hydrogenation of 4‐phenyl‐2‐butanone with high enantioselectivity. The use of BPy‐PMO as a support for metal complexes could be applied to other systems consisting of a metal‐complex catalyst and an enzyme.  相似文献   

19.
Two chiral carboxylic acid functionalized micro‐ and mesoporous metal–organic frameworks (MOFs) are constructed by the stepwise assembly of triple‐stranded heptametallic helicates with six carboxylic acid groups. The mesoporous MOF with permanent porosity functions as a host for encapsulation of an enantiopure organic amine catalyst by combining carboxylic acids and chiral amines in situ through acid–base interactions. The organocatalyst‐loaded framework is shown to be an efficient and recyclable heterogeneous catalyst for the asymmetric direct aldol reactions with significantly enhanced stereoselectivity in relative to the homogeneous organocatalyst.  相似文献   

20.
Converting light hydrocarbons such as methane, ethane, propane, and cyclohexane into value-added chemicals and fuel products by means of direct C−H functionalization is an attractive method in the petrochemical industry. As they emerge as a relatively new class of porous solid materials, metal–organic frameworks (MOFs) are appealing as single-site heterogeneous catalysts or catalytic supports for C−H bond activation. In contrast to the traditional microporous and mesoporous materials, MOFs feature high porosity, functional tunability, and molecular-level characterization for the study of structure–property relationships. These virtues make MOFs ideal platforms to develop catalysts for C−H activation with high catalytic activity, selectivity, and recyclability under relatively mild reaction conditions. This review highlights the research aimed at the implementation of MOFs as single-site heterogeneous catalysts for C−H bond activation. It provides insight into the rational design and synthesis of three types of stable MOF catalysts for C−H bond activation, that is, i) metal nodes as catalytic sites, ii) the incorporation of catalytic sites into organic struts, and iii) the incorporation of catalytically active guest species into pores of MOFs. Here, the rational design and synthesis of MOF catalysts that lead to the distinct catalytic property for C−H bond activation are discussed along with the post-synthesis of MOFs, intriguing functions with MOF catalysts, and microenvironments that lead to the distinct catalytic properties of MOF catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号