首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is promising and challenging to manipulate the electronic structures and functions of materials utilizing both metal‐to‐metal charge transfer (MMCT) and spin‐crossover (SCO) to tune the valence and spin states of metal ions. Herein, a metallocyanate building block is used to link with a FeII‐triazole moiety and generates a mixed‐valence complex {[(Tp4‐Me)FeIII(CN)3]9[FeII4(trz‐ph)6]}?[Ph3PMe]2?[(Tp4‐Me)FeIII(CN)3] ( 1 ; trz‐ph=4‐phenyl‐4H‐1,2,4‐triazole). Moreover, MMCT occurs between FeIII and one of the FeII sites after heat treatment, resulting in the generation of a new phase, {[(Tp4‐Me)FeII(CN)3][(Tp4‐Me)FeIII(CN)3]8 [FeIIIFeII3(trz‐ph)6]}? [Ph3PMe]2?[(Tp4‐Me)FeIII(CN)3] ( 1 a ). Structural and magnetic studies reveal that MMCT can tune the two‐step SCO behavior of 1 into one‐step SCO behavior of 1 a . Our work demonstrates that the integration of MMCT and SCO can provide a new alternative for manipulating functional spin‐transition materials with accessible multi‐electronic states.  相似文献   

2.
Magnetic and dielectric properties have been tuned simultaneously by external stimuli with rapid and sensitive response, which is crucial to monitor the magnetic state via capacitive measurement. Herein, positive charged FeII ions were linked via negative charged [(Tp)FeIII(CN)3]? (Tp=hydrotris(pyrazolyl)borate) units to form a neutral chain. The spin‐crossover (SCO) on FeII sites could be sensitively triggered via thermal treatment, light irradiation, and pressure. SCO switched the spin state of the FeII ions and antiferromagnetic interactions between FeIII and FeII ions, resulting in significant change in magnetization. Moreover, SCO induced rotation of negative charged [(Tp)FeIII(CN)3]? units, generating dielectric anomaly due to geometric change of charges distribution. This work provides a rational way to manipulate simultaneous variations in magnetic and dielectric properties utilizing SCO as an actuator to tune spin arrangement, magnetic coupling, and charge distribution.  相似文献   

3.
The use of the [FeIII(AA)(CN)4]? complex anion as metalloligand towards the preformed [CuII(valpn)LnIII]3+ or [NiII(valpn)LnIII]3+ heterometallic complex cations (AA=2,2′‐bipyridine (bipy) and 1,10‐phenathroline (phen); H2valpn=1,3‐propanediyl‐bis(2‐iminomethylene‐6‐methoxyphenol)) allowed the preparation of two families of heterotrimetallic complexes: three isostructural 1D coordination polymers of general formula {[CuII(valpn)LnIII(H2O)3(μ‐NC)2FeIII(phen)(CN)2 {(μ‐NC)FeIII(phen)(CN)3}]NO3 ? 7 H2O}n (Ln=Gd ( 1 ), Tb ( 2 ), and Dy ( 3 )) and the trinuclear complex [CuII(valpn)LaIII(OH2)3(O2NO)(μ‐NC)FeIII(phen)(CN)3] ? NO3 ? H2O ? CH3CN ( 4 ) were obtained with the [CuII(valpn)LnIII]3+ assembling unit, whereas three isostructural heterotrimetallic 2D networks, {[NiII(valpn)LnIII(ONO2)2(H2O)(μ‐NC)3FeIII(bipy)(CN)] ? 2 H2O ? 2 CH3CN}n (Ln=Gd ( 5 ), Tb ( 6 ), and Dy ( 7 )) resulted with the related [NiII(valpn)LnIII]3+ precursor. The crystal structure of compound 4 consists of discrete heterotrimetallic complex cations, [CuII(valpn)LaIII(OH2)3(O2NO)(μ‐NC)FeIII(phen)(CN)3]+, nitrate counterions, and non‐coordinate water and acetonitrile molecules. The heteroleptic {FeIII(bipy)(CN)4} moiety in 5 – 7 acts as a tris‐monodentate ligand towards three {NiII(valpn)LnIII} binuclear nodes leading to heterotrimetallic 2D networks. The ferromagnetic interaction through the diphenoxo bridge in the CuII?LnIII ( 1 – 3 ) and NiII?LnIII ( 5 – 7 ) units, as well as through the single cyanide bridge between the FeIII and either NiII ( 5 – 7 ) or CuII ( 4 ) account for the overall ferromagnetic behavior observed in 1 – 7 . DFT‐type calculations were performed to substantiate the magnetic interactions in 1 , 4 , and 5 . Interestingly, compound 6 exhibits slow relaxation of the magnetization with maxima of the out‐of‐phase ac signals below 4.0 K in the lack of a dc field, the values of the pre‐exponential factor (τo) and energy barrier (Ea) through the Arrhenius equation being 2.0×10?12 s and 29.1 cm?1, respectively. In the case of 7 , the ferromagnetic interactions through the double phenoxo (NiII–DyIII) and single cyanide (FeIII–NiII) pathways are masked by the depopulation of the Stark levels of the DyIII ion, this feature most likely accounting for the continuous decrease of χM T upon cooling observed for this last compound.  相似文献   

4.
To investigate how the central metalloligand geometry influences distant or vicinal metal‐to‐metal charge‐transfer (MMCT) properties of polynuclear complexes, cis‐ and trans‐isomeric heterotrimetallic complexes, and their one‐ and two‐electron oxidation products, cis/trans‐ [Cp(dppe)FeIINCRuII(phen)2CN‐FeII(dppe)Cp][PF6]2 (cis/trans‐ 1 [PF6]2), cis/trans‐[Cp(dppe)FeIINCRuII(phen)2CNFeIII‐(dppe)Cp][PF6]3 (cis/trans‐ 1 [PF6]3) and cis/trans‐[Cp(dppe)FeIIINCRuII(phen)2CN‐FeIII(dppe)Cp][PF6]4 (cis/trans‐ 1 [PF6]4) have been synthesized and characterized. Electrochemical measurements show the presence of electronic interactions between the two external FeII atoms of the cis‐ and trans‐isomeric complexes cis/trans‐ 1 [PF6]2. The electronic properties of all these complexes were studied and compared by spectroscopic techniques and TDDFT//DFT calculations. As expected, both mixed valence complexes cis/trans‐ 1 [PF6]3 exhibited different strong absorption signals in the NIR region, which should mainly be attributed to a transition from an MO that is delocalized over the RuII‐CN‐FeII subunit to a FeIII d orbital with some contributions from the co‐ligands. Moreover, the NIR transition energy in trans‐ 1 [PF6]3 is lower than that in cis‐ 1 [PF6]3, which is related to the symmetry of their molecular orbitals on the basis of the molecular orbital analysis. Also, the electronic spectra of the two‐electron oxidized complexes show that trans‐ 1 [PF6]4 possesses lower vicinal RuII→FeIII MMCT transition energy than cis‐ 1 [PF6]4. Moreover, the assignment of MMCT transition of the oxidized products and the differences of the electronic properties between the cis and trans complexes can be well rationalized using TDDFT//DFT calculations.  相似文献   

5.

The engineering of switchable molecules with magnetic multistability is lying on the cutting-edge research topics for integrating multi-switches and ternary memory devices. Here we presented a cyanide-bridged {FeIII2FeII} desolvated complex {[(pzTp)FeIII-(CN)3]2[FeII(L)]} (1), obtained through single-crystal-to-single-crystal (SCSC) transformation from its solvated phase {[(pzTp)-FeIII(CN)3]2[FeII(L)]}·2CH3OH·5H2O (1·sol). Remarkably, 1 exhibited unprecedented three-step transition in magnetization with wide thermal hysteresis (44, 40, and 36 K) in the temperature range of 80–320 K. The detailed studies demonstrated that the tristable character originates from both an order-disorder structural phase transition (SPT) and a strongly cooperative two-step spin crossover (SCO) process. This work thus provides a new promising strategy for realizing multiple bistablity in magnetization by introducing two different transitions.

  相似文献   

6.
Cyanide‐bridged metal complexes of [Fe8M6(μ‐CN)14(CN)10 (tp)8(HL)10(CH3CN)2][PF6]4?n CH3CN?m H2O (HL=3‐(2‐pyridyl)‐5‐[4‐(diphenylamino)phenyl]‐1H‐pyrazole), tp?=hydrotris(pyrazolylborate), 1 : M=Ni with n=11 and m=7, and 2 : M=Co with n=14 and m=5) were prepared. Complexes 1 and 2 are isomorphous, and crystallized in the monoclinic space group P21/n. They have tetradecanuclear cores composed of eight low‐spin (LS) FeIII and six high‐spin (HS) MII ions (M=Ni and Co), all of which are bridged by cyanide ions, to form a crown‐like core structure. Magnetic susceptibility measurements revealed that intramolecular ferro‐ and antiferromagnetic interactions are operative in 1 and in a fresh sample of 2 , respectively. Ac magnetic susceptibility measurements of 1 showed frequency‐dependent in‐ and out‐of‐phase signals, characteristic of single‐molecule magnetism (SMM), while desolvated samples of 2 showed thermal‐ and photoinduced intramolecular electron‐transfer‐coupled spin transition (ETCST) between the [(LS‐FeII)3(LS‐FeIII)5(HS‐CoII)3(LS‐CoIII)3] and the [(LS‐FeIII)8(HS‐CoII)6] states.  相似文献   

7.
Abstract

In the mixed-valence complex [RuIII(NH3)5(μ-dpypn)FeII(CN)5] with the flexible bridging ligand 1,3-di(4-pyridyl)propane (dpypn), electrostatic interactions between the {Ru(NH3)5}3+ and {Fe(CN)5}3? moieties drive a strong bending of dpypn and approximation of the RuIII and FeII centers, from which the enhanced electronic coupling between metal ions produces an intense intervalence-transfer absorption in the near-infrared region. Density functional theory calculations corroborate both the electrostatic bending in this heterobinuclear complex and a linear geometry in the homobinuclear counterparts [Ru(NH3)5(μ-dpypn)Ru(NH3)5]5+ and [Fe(CN)5(μ-dpypn)Fe(CN)5]5?, for which no evidence of electronic coupling was found because of the separation between metal centers. Furthermore, the heterobinuclear species formed an inclusion complex with β-cyclodextrin where the imposed linear geometry prevents significant electronic coupling and intervalence charge transfer between the RuIII and FeII centers.  相似文献   

8.
Colossal and anisotropic thermal expansion is a key function for microscale or nanoscale actuators in material science. Herein, we present a hexanuclear compound of [(Tp*)FeIII(CN)3]4[FeII(Ppmp)]2⋅2 CH3OH ( 1 , Tp*=hydrotris(3,5-dimethyl-pyrazol-1-yl)borate and Ppmp=2-[3-(2′-pyridyl)pyrazol-1-ylmethyl]pyridine), which has a rhombic core structure abbreviated as {FeIII2FeII2}. Magnetic susceptibility measurements and single-crystal X-ray diffraction analyses revealed that 1 underwent thermally-induced spin transition with the thermal hysteresis. The FeII site in 1 behaved as a spin crossover (SCO) unit, and significant deformation of its octahedron was observed during the spin transition process. Moreover, the distortion of the FeII centers actuated anisotropic deformation of the rhombic {FeIII2FeII2} core, which was spread over the whole crystal through the subsequent molecular rearrangements, leading to the colossal anisotropic thermal expansion. Our results provide a rational strategy for realizing the colossal anisotropic thermal expansion and shape memory effects by tuning the magnetic bistability.  相似文献   

9.
The electron transfer reaction [(NH3)4COIII(μ-pzCO2)FeII(CN)5] → [(NH3)4COII(μ-pzCO2)FeIII (CN)5] has been studied in water-cosolvent mixtures at ionic strength of I = 0.5 mol dm−3 (NaClO4). A multiparameter regression coefficients have been compared to those obtained for the same reaction to a different ionic strength (I = 2.8 10−3 mol dm−3). The magnitude of these coefficients changes with the ionic strength. An explanation is given for this behavior. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
The cyanide building block [FeIII(pzphen)(CN)4] and its four lanthanide complexes [{FeIII(pzphen)(CN)4}2LnIII(H2O)5(DMF)3] · (NO3) · 2(H2O) · (CH3CN) [Ln = Nd ( 1 ), Sm ( 2 ), DMF = dimethyl formamide] and [{FeIII(pzphen)(CN)4}2LnIII(NO3)(H2O)2(DMF)2](CH3CN) [Ln = Gd ( 3 ), Dy ( 4 )] were synthesized and structurally characterized by single‐crystal X‐ray diffraction. Compounds 1 and 2 are ionic salts with two [FeIII(pzphen)(CN)4] cations and one LnIII ion, but compounds 3 and 4 are cyano‐bridged FeIIILnIII heterometallic 3d‐4f complexes exhibiting a trinuclear structure in the same conditions. Magnetic studies show that compound 3 is antiferromagnetic between the central FeIII and GdIII atoms. Furthermore, the trinuclear cyano‐bridged FeIII2DyIII compound 4 displays no single‐molecular magnets (SMMs) behavior by the alternating current magnetic susceptibility measurements.  相似文献   

11.
The present work describes the development of a selective, sensitive and stable sensing microsensor for scanning electrochemical microscopy (SECM) to measure H2O2 during electrochemical reduction of oxygen. The microsensor is based on graphene and Poly(3,4‐ethylenedioxythiophene) composite as support to iron (III) hexacyanoferrate (II) (PEDOT/graphene/FeIII4[FeII(CN)6]3 microsensor). The electrochemical properties of the PEDOT/graphene/FeIII4[FeII(CN)6]3 microsensor were investigated by cyclic voltammetry (CV) and scanning electrochemical microscopy (SECM). The PEDOT/graphene/FeIII4[FeII(CN)6]3 microsensor showed an excellent electrocatalytic activity toward hydrogen peroxide (H2O2) reduction with a diminution of the overpotential of about 500 mV in comparison to the process at a bare gold microelectrode. The microsensor presented excellent performance for two dimensional mapping of H2O2 by SECM in 0.1 mol L?1 phosphate buffer solution (pH 7.0). Under optimized conditions, a linear response range from 1 up to 1000 µmol L?1 was obtained with a sensitivity of 0.08 nA L µmol?1 and limit of detection of 0.5 µmol L?1.  相似文献   

12.
A mononuclear FeII complex, prepared with a Brønsted diacid ligand, H2L (H2L=2‐[5‐phenyl‐1H‐pyrazole‐3‐yl] 6‐benzimidazole pyridine), shows switchable physical properties and was isolated in five different electronic states. The spin crossover (SCO) complex, [FeII(H2L)2](BF4)2 ( 1A ), exhibits abrupt spin transition at T1/2=258 K, and treatment with base yields a deprotonated analogue [FeII(HL)2] ( 1B ), which shows gradual SCO above 350 K. A range of FeIII analogues were also characterized. [FeIII(HL)(H2L)](BF4)Cl ( 1C ) has an S=5/2 spin state, while the deprotonated complexes [FeIII(L)(HL)], ( 1D ), and (TEA)[FeIII(L)2], ( 1E ) exist in the low‐spin S=1/2 state. The electronic properties of the five complexes were fully characterized and we demonstrate in situ switching between multiple states in both solution and the solid‐state. The versatility of this simple mononuclear system illustrates how proton donor/acceptor ligands can vastly increase the range of accessible states in switchable molecular devices.  相似文献   

13.
The syntheses, structures and magnetic properties of the coordination compounds of formula [FeIII(acac2-trien)][MnIICrIII(Cl2 An)3]·(CH3CN)2 (1), [FeIII(acac2-trien)][MnIICrIII(Br2An)3]·(CH3CN)2 (2) and [GaIII(acac2-trien)][MnIICrIII(Br2An)3]·(CH3CN)2 (3) are reported. They exhibit a 2D anionic network formed by Mn(ii) and Cr(iii) ions linked through anilate ligands, while the [FeIII(acac2-trien)]+ or [GaIII(acac2-trien)]+ charge-compensating cations are placed inside the hexagonal channels of the 2D network, instead of being inserted in the interlamellar spacing. Thus, these crystals are formed by hybrid layers assembled through van der Waals interactions. The magnetic properties indicate that these compounds behave as magnets exhibiting a long-range ferrimagnetic ordering at ca. 11 K, while the inserted Fe(iii) cations remain in the high-spin state. As for graphene, these layered materials can be exfoliated in atomically-thin layers with heights down to 2 nm by using the well-known Scotch tape method. Hence, this micromechanical procedure provides a suitable way to isolate ultrathin layers of this kind of graphene related magnetic materials. Interestingly, this method can also be successfully used to exfoliate the 2D anilate-based compound [FeIII(sal2-trien)][MnIICrIII(Cl2An)3]·solv (4), which exhibits the typical alternated cation/anion layered structure. This result shows that the micromechanical exfoliation method, which has been extensively used for exfoliating van der Waals layered solids, can also be useful for exfoliating layered coordination compounds, even when they are formed by ionic components.  相似文献   

14.
Four cyanide-bridged heterometallic complexes {[CuPb(L 1 )][Fe III (bpb)(CN) 2 ]} 2 ·(ClO 4 ) 2 ·2H 2 O·2CH 3 CN (1), {[CuPb(L 1 )] 2 [Fe II (CN) 6 ](H 2 O) 2 }·10H 2 O (2), {[Cu 2 (L 2 )][Fe III (bpb)(CN) 2 ] 2 }·2H 2 O·2CH 3 OH (3) and {[Cu 2 (L 2 )] 3 [Fe III (CN) 6 ] 2 (H 2 O) 2 }·10H 2 O (4) have been synthesized by treating K[Fe III (bpb)(CN) 2 ] [bpb 2-=1,2-bis(pyridine-2-carboxamido)benzenate] and K 3 [Fe III (CN)] 6 with dinuclear compartmental macrocyclic Schiff-base complexes [CuPb(L 1 )] (ClO 4 ) 2 or [Cu 2 (L 2 )]·(ClO 4 ) 2 , in which H 2 L 1 was derived from 2,6-diformyl-4-methyl-phenol, ethylenediamine, and diethylenetriamine in the molar ratio of 2:1:1 and H 2 L 2 from 2,6-diformyl-4-methyl-phenol and propylenediamine in the molar ratio of 1:1. Single crystal X-ray diffraction analysis reveals that compound 1 displays a cyclic hexanuclear heterotrimetallic molecular structure with alternating [FeⅢ (bpb)(CN) 2 ]- and [CuPb(L 1 )] 2+ units. Complex 2 is of a neutral dumb-bell-type pentanuclear molecular configuration consisting of one [Fe(CN)6] 4- anion sandwiched in two [CuPu(L 1 )] 2+ cations, and the pentanuclear moieties are further connected by the hydrogen bonding to give a 2D supramolecular framework. Heterobimetallic complex 3 is a tetranuclear molecule composed of a centrosymmetric [Cu 2 (L2)] 2+ segment and two terminal cyanide-containing blocks [FeⅢ (bpb)(CN)2 ]- . Octanuclear compound 4 is built from two [Fe(CN)6]3- anions sandwiched in the three [Cu 2 L 2 ] 2+ cations. Investigation of their magnetic properties reveals the overall antiferromagnetic behavior in the series of complexes except 2.  相似文献   

15.
《Comptes Rendus Chimie》2003,6(3):343-352
A family of CoFe Prussian blue analogues CxCo4[Fe(CN)6](8+x/3)(4–x)3 (x = amount of alkali cation inserted per conventional cell, C = Na, K, Rb, Cs; □ = [Fe(CN)6] vacancy) have been synthesized and characterized. Their photomagnetic properties have been investigated by magnetic measurements before and after irradiation and X-ray diffraction under continuous irradiation. We show that the photo-induced magnetism depends on several parameters: (i) the amount of CoIII–FeII diamagnetic excitable pairs per cell; (ii) the amount of [Fe(CN)6] vacancies, and (iii) the amount and nature of the alkali cations per cell. We evidence a discontinuity in the properties' change when the amount of alkali cation x varies, around x = 1. For x < 1, there is an excitation of diluted CoIII–FeII diamagnetic pairs in a phase mainly composed of magnetic CoII–FeIII entities within the same structural phase through a second-order continuous transformation. For x ≥ 1, the formation of domains mainly composed of CoII–FeIII* metastable magnetic pairs in a phase mainly composed of CoIII–FeII diamagnetic ones through a first-order discontinuous transition is observed. The study points out that sodium derivatives are more efficient than the others. Among them, Na1Co4[Fe(CN)6]31 is predicted to be the most efficient one. To cite this article: A. Bleuzen et al., C. R. Chimie 6 (2003).  相似文献   

16.
A two-step hysteretic FeII spin crossover (SCO) effect was achieved in programmed layered Cs{[Fe(3-CNpy)2][Re(CN)8]}⋅H2O ( 1 ) (3-CNpy=3-cyanopyridine) assembly consisting of cyanido-bridged FeII-ReV square grid sheets bonded by Cs+ ions. The presence of two non-equivalent FeII sites and the conjunction of 2D bimetallic coordination network with non-covalent interlayer interactions involving Cs+, [ReV(CN)8]3− ions, and 3-CNpy ligands, leads to the occurrence of two steps of thermal SCO with strong cooperativity giving a double thermal hysteresis loop. The resulting spin-transition phenomenon could be tuned by an external pressure giving the room-temperature range of SCO, as well as by visible-light irradiation, inducing an efficient recovery of the high-spin FeII state at low temperatures. We prove that octacyanidorhenate(V) ion is an outstanding metalloligand for induction of a cooperative multistep, multiswitchable FeII SCO effect.  相似文献   

17.
Discrete molecular species that can perform certain functions in response to multiple external stimuli constitute a special class of multifunctional molecular materials called smart molecules. Herein, cyanido-bridged coordination clusters {[FeII(2-pyrpy)2]4[MIV(CN)8]2} ⋅ 4 MeOH ⋅ 6 H2O (M=Mo ( 1 solv ), M=W ( 2 solv ) and 2-pyrpy=2-(1-pyrazolyl)pyridine are presented, which show persistent solvent driven single-crystal-to-single-crystal transformations upon sorption/desorption of water and methanol molecules. Three full desolvation–resolvation cycles with the concomitant change of the host molecules do not damage the single crystals. More importantly, the Fe4M2 molecules constitute a unique example where the presence of the guests directly affects the pressure-induced thermal spin crossover (SCO) phenomenon occurring at the FeII centres. The hydrated phases show a partial SCO with approximately two out-of-four FeII centres undergoing a gradual thermal SCO at 1 GPa, while in the anhydrous form the pressure-induced SCO effect is almost quenched with only 15 % of the FeII centres undergoing high-spin to low-spin transition at 1 GPa.  相似文献   

18.
A cyanide-bridged FeIII2CoII double zigzag chain, {[FeIII(bipy)(CN)4]2CoII(btab)2}n [bipy=2,2′-bipyridine, btab=4,4′-(1,3-phenylene)-bis-4H-1,2,4-triazole] (1), was obtained with tetracyanometalate precursors and CoII ions. The chains were further linked by the ditopic btab ligands to a layer. Magnetic property studies demonstrate that 1 shows both metamagnetism with a critical field Hc=400 Oe and single-chain magnet behavior.  相似文献   

19.
A two‐step hysteretic FeII spin crossover (SCO) effect was achieved in programmed layered Cs{[Fe(3‐CNpy)2][Re(CN)8]}?H2O ( 1 ) (3‐CNpy=3‐cyanopyridine) assembly consisting of cyanido‐bridged FeII‐ReV square grid sheets bonded by Cs+ ions. The presence of two non‐equivalent FeII sites and the conjunction of 2D bimetallic coordination network with non‐covalent interlayer interactions involving Cs+, [ReV(CN)8]3? ions, and 3‐CNpy ligands, leads to the occurrence of two steps of thermal SCO with strong cooperativity giving a double thermal hysteresis loop. The resulting spin‐transition phenomenon could be tuned by an external pressure giving the room‐temperature range of SCO, as well as by visible‐light irradiation, inducing an efficient recovery of the high‐spin FeII state at low temperatures. We prove that octacyanidorhenate(V) ion is an outstanding metalloligand for induction of a cooperative multistep, multiswitchable FeII SCO effect.  相似文献   

20.
The clectrochemical behaviour of the complexes [RuII(L)(CO)2Cl2], [RuII(L)(CO)Cl3][Me4N] and [RuII(L)(CO)2(CH3CN)2][CF3SO3]2 (L = 2,2′-bipyridine or 4,4′-isopropoxycarbonyl-2,2′-bipyridine) has been investigated in CH3CN. The oxidation of [Ru(L)(CO)2Cl2] produces new complexes [RuIII(L)(CO)(CH3CN)2Cl]2+ as a consequence of the instability of the electrogenerated transient RuIII species [RuIII(L)(CO)2Cl2]+. In contrast, the oxidation of [RuII(L)(CO)Cl3][Me4N] produces the stable [RuIII(L)(CO)Cl3] complex. In contrast [RuII(L)(CO)2(CH3CN)2][CF3SO3]2 is not oxidized in the range up to the most positive potentials achievable. The reduction of [RuII(L)(CO)2Cl2] and [RuII(L)(CO)2(CH3CN)2][CF3SO3]2 results in the formation of identical dark blue strongly adherent electroactive films. These films exhibit the characteristics of a metal-metal bond dimer structure. No films are obtained on reduction of [RuII(L)(CO)Cl3][Me4N]. The effect of the substitution of the bipyridine ligand by electron-withdrawing carboxy ester groups on the electrochemical behaviour of all these complexes has also been investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号