首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A proton–electron coupling system, exhibiting unique bistability or multistability of the protonated state, is an attractive target for developing new switchable materials based on proton dynamics. Herein, we present an iron(II) hydrazone crystalline compound, which displays the stepwise transition and bistability of proton transfer at the crystal level. These phenomena are realized through the coupling with spin transition. Although the multi‐step transition with hysteresis has been observed in various systems, the corresponding behavior of proton transfer has not been reported in crystalline systems; thus, the described iron(II) complex is the first example. Furthermore, because proton transfer occurs only in one of the two ligands and π electrons redistribute in it, the dipole moment of the iron(II) complexes changes with the proton transfer, wherein the total dipole moment in the crystal was canceled out owing to the antiferroelectric‐like arrangement.  相似文献   

2.
The anisotropy of the crystalline relaxation (α relaxation) in oriented poly(vinylidene fluoride) in crystal form II has been studied. The dielectric increment Δε is analyzed on the basis of the two-site model. A linear relation between Δε/χξ and cos2θ is obtained, where χ is the degree of crystallinity, ξ is the ratio of the internal field to the applied field, and θ is the angle between the applied electric field and the molecular axis. The dipole moment changes direction only along the molecular axis in the relaxation in crystal form II; the molecular motion cannot be explained by chain rotation around the molecular axis. Possible models for the α relaxation are proposed: change in conformation with internal rotation can occur in the crystalline chains, and defects in the crystalline regions play an important role in the α relaxation.  相似文献   

3.
We present a fundamentally new approach for measuring the transition dipole moment of molecular transitions, which combines the benefits of quantum interference effects, such as the Autler-Townes splitting, with the familiar R-centroid approximation. This method is superior to other experimental methods for determining the absolute value of the R-dependent electronic transition dipole moment function mu(e)(R), since it requires only an accurate measurement of the coupling laser electric field amplitude and the determination of the Rabi frequency from an Autler-Townes split fluorescence spectral line. We illustrate this method by measuring the transition dipole moment matrix element for the Na2 A 1Sigma(u)+ (v' = 25, J' = 20e)-X 1Sigma(g)+ (v" = 38, J" = 21e) rovibronic transition and compare our experimental results with our ab initio calculations. We have compared the three-level (cascade) and four-level (extended Lambda) excitation schemes and found that the latter is preferable in this case for two reasons. First, this excitation scheme takes advantage of the fact that the coupling field lower level is outside the thermal population range. As a result vibrational levels with larger wave function amplitudes at the outer turning point of vibration lead to larger transition dipole moment matrix elements and Rabi frequencies than those accessible from the equilibrium internuclear distance of the thermal population distribution. Second, the coupling laser can be "tuned" to different rovibronic transitions in order to determine the internuclear distance dependence of the electronic transition dipole moment function in the region of the R-centroid of each coupling laser transition. Thus the internuclear distance dependence of the transition moment function mu(e)(R) can be determined at several very different values of the R centroid. The measured transition dipole moment matrix element for the Na2 A 1Sigma(u)+ (v' = 25, J' = 20e)-X 1Sigma(g)+ (v" = 38, J" = 21e) transition is 5.5+/-0.2 D compared to our ab initio value of 5.9 D. By using the R-centroid approximation for this transition the corresponding experimental electronic transition dipole moment is 9.72 D at Rc = 4.81 A, in good agreement with our ab initio value of 10.55 D.  相似文献   

4.
A number of calculated structures of heterogeneous proton-bound dimers containing monomers such as acetonitrile, cyanamide, vinylene carbonate, and propiolactone, which have high dipole moments, are presented. These proton-bound dimers are predicted to have a structural anomaly pertaining to the bond distances between the central proton and the basic sites on each of the monomers. The monomers with the high dipole moments also have the larger proton affinity and, on the basis of difference in proton affinities, it would be expected that the proton would be closer to this monomer than the one with the lower proton affinity. However, the proton is found to lie substantially closer to the monomer with the lower proton affinity in most cases, unless the difference in proton affinity is too large. Simply stated, the difference in proton affinities is smaller than the difference in the affinity to form an ion-dipole complex for the two monomers and it is the larger affinity for the high dipole moment monomer (which also has the higher proton affinity) to form an ion-dipole complex that is responsible for the proton lying closer to the low proton affinity monomer. The bond distances between the central proton and the monomers are found to be related to the difference in proton affinity. It is found, though, that the proton-bound dimers can be grouped into two separate groups, one where the proton-bound dimer contains a high dipole moment monomer and one group where the proton-bound dimer does not contain a high dipole moment monomer. From these plots it has been determined that a high dipole moment monomer is one that has a dipole moment greater than 2.9 D.  相似文献   

5.
Electronic excitation energy transfer along a molecular wire depends on the relative orientation of the electronic transition dipole moments of neighboring chromophores. In porphycenes, this orientation is changed upon double proton transfer in the electronic ground state. We explore the possibility to trigger such a double proton transfer reaction by means of an infrared pump-dump laser control scheme. To this end, a quantum chemical characterization of an asymmetrically substituted porphycene is performed using density functional theory. Ground state geometries, the topology of the potential energy surface for double proton transfer, and \(\hbox{S}_0\rightarrow\hbox{S}_1\) transition energies are compared with the parent compound porphycene and a symmetric derivative. Employing a simple two-dimensional model for the double proton transfer, which incorporates sequential and concerted motions, quantum dynamics simulations of the laser-driven dynamics are performed which demonstrate tautomerization control. Based on the orientation of the transition dipole moments, this tautomerization may lead to an estimated change in the Förster transfer coupling of about 60%.  相似文献   

6.
The observed splitting of the carbonyl stretching frequencies of hydrogen bonded carboxylic acid dimers has been explained by other authors in terms of transition dipole coupling. In this paper it is shown that the transition dipole interaction for carbonyl groups gives very small splittings when reasonable dipole moment changes are used.  相似文献   

7.
Semiempirical SCF-MO studies of tautomerism in alloxan preclude the possibility of direct proton transfer in the gas phase due to the strain in the four-centred transition state, in which the proton being transferred is forced to come close to the positively charged carbon atom at the opposite corner of the four-membered ring. However, in aqueous solution, the activation barrier reduces appreciably, not only due to reduction in strain, but also due to charge separation in the transition state, which is stabilized due to ionic resonance. The N-H bond is almost broken, while the O-H bond is only partially formed in the transition state. The other stabilizing effect in aqueous solution is due to bulk solvent dielectric effects, which stabilize the transition state to a greater extent due to its higher dipole moment. Although the transition states for proton transfer to the neighbouring oxygen atoms on either side have comparable energies, as the mechanisms of proton transfer leading to the formation of the 2-hydroxy and 4-hydroxy tautomers are similar, bulk solvent effects are larger in the latter due to the higher dipole moment of the transition state. The reason is the almost complete separation of the two entities, i.e. the alloxan anion and the hydronium ion in the latter case, indicating that in this case a dissociative mechanism of the kind encountered in acid-base equilibria is operating.  相似文献   

8.
A multicomponent cluster has been synthesised in which four disparate chromophores have been covalently linked through a logical arrangement that favours efficient photon collection and migration to a terminal emitter. The primary energy acceptor is a boron dipyrromethene (Bodipy) dye and different polycyclic aryl hydrocarbons have been substituted in place of the regular fluorine atoms attached to the boron centre. The first such unit is perylene, linked to boron through a 1,4‐diethynylphenyl unit, which collects photons in the 320–490 nm region. The other photon collector is pyrene, also connected to the boron centre by a 1,4‐diethynylphenyl spacer and absorbing strongly in the 280–420 nm region, which itself is equipped with an ethynylfluorene residue that absorbs in the UV region. Illumination into any of the polycyclic aryl hydrocarbons results in emission from the Bodipy unit. The rates of intramolecular electronic energy transfer have been determined from time‐correlated, single‐photon counting studies and compared with the rates for Coulombic interactions computed from the Förster expression. It has been necessary to allow for i) a more complex screening potential, ii) multipole–multipole coupling, iii) an extended transition dipole moment vector and iv) bridge‐mediated energy transfer. The bridge‐mediated energy transfer includes both modulation of the donor transition dipole vector by bridge states and Dexter‐type electron exchange. The latter is a consequence of the excellent electronic coupling properties of the 1,4‐diethynylphenyl spacer unit. The net result is a large antenna effect that localises the photon density at the primary acceptor without detracting from its highly favourable photophysical properties.  相似文献   

9.
The photochromic mechanism of 1-phenyl-3-methyl-4-(6-hydro-4-amino-5-sulfo-2,3- pyrazine)-pyrazole-5-one has been investigated using the density functional theory(DFT). The solvent effect is simulated using the polarizable continuum model(PCM) of the self-consistent reaction field theory. According to the crystal structure of the title compound, an intramolecular proton transfer mechanism from enol to keto form was proposed to interpret its photochromism. Bader's atom-in-molecule(AIM) theory is used to investigate the nature of hydrogen bonds and ring structures. Time-dependent density functional theory(TDDFT) calculation results show that the photochromic process from enol to keto form is reasonable. The conformation and molecular orbital analysis of enol and keto forms explain why only intramolecular proton transfer is possible. The results from analyzing the energy and dipole moments of enol form, transition state and keto form in the gas phase and in different solvents have been used to assess the stability of the title compound.  相似文献   

10.
The 4f-5d transition rates for rare-earth ions in crystals can be calculated with an effective transition operator acting between model 4f(N) and 4f(N-1)5d states calculated with effective Hamiltonian, such as semiempirical crystal Hamiltonian. The difference of the effective transition operator from the original transition operator is the corrections due to mixing in transition initial and final states of excited configurations from both the center ion and the ligand ions. These corrections are calculated using many-body perturbation theory. For free ions, there are important one-body and two-body corrections. The one-body correction is proportional to the original electric dipole operator with magnitude of approximately 40% of the uncorrected electric dipole moment. Its effect is equivalent to scaling down the radial integral (5d/r/4f) to about 60% of the uncorrected HF value. The two-body correction has magnitude of approximately 25% relative to the uncorrected electric dipole moment. For ions in crystals, there is an additional one-body correction due to ligand polarization, whose magnitude is shown to be about 10% of the uncorrected electric dipole moment.  相似文献   

11.
We report the results of a Monte Carlo simulation of polar particles interacting via the Gay-Berne potential combining dipole-dipole interactions. Simulations were carried out on a system of 256 particles with either a zero dipole moment or longitudinal dipole moment located at the centre of the molecule. The system was found to spontaneously form nematic, smectic and crystal phases from an isotropic phase with a random configuration as temperature was decreased, irrespective of values of the dipole moment. The results do not give any indication of a net polarization even in the system with a strong dipole moment (μ* = 2.00). The transition temperature from the isotropic to nematic phase is not sensitive to the value of the dipole moment within the limits of statistical error, while the transition from the nematic to smectic phase depends on the strength of dipole moment. At lower temperatures forming the smectic or the crystal phase, the translational order along the director increases with increasing dipole moment. The dipolar interactions contribute to the long range ordering.  相似文献   

12.
In this paper an application of a reaction field theory of solvent effects has been made to study proton transfer mechanisms in hydrogen bonded systems coupled to an environment. The latter is simulated with reaction fields having variable strength and direction (defined with respect to the supermolecule's total dipole moment direction), together with superposed uniform external electric fields. Changes in proton potential curves and some other properties of a model water dimer and a water trimer are reported. The results are discussed in relation to relevant phenomena in biology and biochemistry, namely proton relay systems in enzymatic catalysis.  相似文献   

13.
A novel core–shell structured columnar liquid crystal composed of a donor‐acceptor dyad of tetraphenoxy perylene bisimide (PBI), decorated with four bithiophene units on the periphery, was synthesized. This molecule self‐assembles in solution into helical J‐aggregates guided by π–π interactions and hydrogen bonds which organize into a liquid‐crystalline (LC) columnar hexagonal domain in the solid state. Donor and acceptor moieties exhibit contrasting exciton coupling behavior with the PBIs’ (J‐type) transition dipole moment parallel and the bithiophene side arms’ (H‐type) perpendicular to the columnar axis. The dyad shows efficient energy and electron transfer in solution as well as in the solid state. The synergy of photoinduced electron transfer (PET) and charge transport along the narcissistically self‐assembled core–shell structure enables the implementation of the dye in two‐contact photoconductivity devices giving rise to a 20‐fold increased photoresponse compared to a reference dye without bithiophene donor moieties.  相似文献   

14.
The phase transition behavior of a thermotropic liquid crystalline poly(aryl ether ketone) synthesized by nucleophilic substitution reactions of 4,4′‐biphenol (BP), and chlorohydroquinone (CH) with 1,4‐bis(4‐fluorobenzoyl)benzene (BF) has been investigated by differential scanning calorimetry (DSC) and wide angle X‐ray diffraction (WAXD). The copolymer exhibits multiple first order phase transitions, which are associated with crystal‐to‐smectic liquid crystal transition and smectic liquid crystal‐to‐isotropic transition. When the cooling rate is low (< 10°C/min), only stable crystal form I is formed. With the cooling rate being high (>20°C/min), the metastable crystal form II is formed, which always coexists with form I. The liquid crystalline phase plays an important role in the formation of metastable phase form II.  相似文献   

15.
The influence of intermolecular vibrational relaxation on dipole moment correlation functions, as obtained from IR band shapes, is discussed. It is explicitly shown that vibrational relaxation due to intermolecular interactions depends on the reorientational behaviour of the molecules in the liquid.Therefore, an a priori separation of the dipole moment correlation function into independent reorientational and vibrational factors is not generally possible. The implications for various procedures used to “correct” Raman and IR band shapes for vibrational relaxation are discussed.The expression derived for the intermolecular vibrational relaxation is used to calculate theoretically the effect of transition dipole-transition dipole coupling on dipole moment correlation functions.Experimental data obtained from isotopic dilution measurements support the interpretation of the isotopic dilution effect in terms of the transition dipole-transition dipole coupling.  相似文献   

16.
An accurate and numerically efficient method for the calculation of intermolecular Coulomb couplings between charge densities of electronic states and between transition densities of electronic excitations is presented. The coupling of transition densities yields the F?rster type excitation energy transfer coupling, and from the charge density coupling, a shift in molecular excitation energies results. Starting from an ab initio calculation of the charge and transition densities, atomic partial charges are determined such as to fit the resulting electrostatic potentials of the different states and the transition. The different intermolecular couplings are then obtained from the Coulomb couplings between the respective atomic partial charges. The excitation energy transfer couplings obtained in the present TrEsp (transition charge from electrostatic potential) method are compared with couplings obtained from the simple point-dipole and extended dipole approximations and with those from the ab initio transition density cube method of Krüger, Scholes, and Fleming. The present method is of the same accuracy as the latter but computationally more efficient. The method is applied to study strongly coupled pigments in the light-harvesting complexes of green sulfur bacteria (FMO), purple bacteria (LH2), and higher plants (LHC-II) and the "special pairs" of bacterial reaction centers and reaction centers of photosystems I and II. For the pigment dimers in the antennae, it is found that the mutual orientation of the pigments is optimized for maximum excitonic coupling. A driving force for this orientation is the Coulomb coupling between ground-state charge densities. In the case of excitonic couplings in the "special pairs", a breakdown of the point-dipole approximation is found for all three reaction centers, but the extended dipole approximation works surprisingly well, if the extent of the transition dipole is chosen larger than assumed previously. For the "special pairs", a large shift in local transition energies is found due to charge density coupling.  相似文献   

17.
The dipole strengths of the 4A24T1(F), 4T1(P), d-electron transitions of the cobalt(II) tetrahalides are found to decrease with an increase in temperature, in agreement with a dynamic ligand-polarisation model for the absorption mechanism. The reduction in dipole strength is accounted for by a decrease in the coulombic coupling between the quadrupole moment of the d-electron transition of the metal ion and the transient electric dipole moment induced in the ligands, due to the anharmonic increase in the mean bond length and the progressively larger mean-square amplitudes of the bending modes of the complex ion in its ground electronic state as the temperature is raised.  相似文献   

18.
The polarized, low-energy, two-photon absorption system of pyrene-h10 and pyrene-d10 in fluorene and biphenyl host crystals at 4.2 K has been measured and analyzed to provide firm symmetry assignments. Good agreement was found for the energies of the two-photon band positions in a heptane matrix recorded using a site-selective technique. The transition has Ag vibronic symmetry being induced by single quanta of several b2u fundamentals; very short progressions in some ag modes were observed. Vibronic coupling involving ag modes in the one-photon spectra has been examined. Relative line intensities have been measured for seven fundamentals in absorption and fluorescence together with some overtones and binary combinations. First-order Herzberg—Teller theory can account for these intensities and the intensities in the two-photon spectrum. The vibronic coupling is of medium strength, and plays an important role in determining the intensities of the bands in the spectrum because the allowed component of the transition is weak. In the one-photon, the strength of the coupling is weaker in a biphenyl than in a heptane matrix; in the former case, it is assumed that there is a transition dipole interaction that acts to transfer intensity from the guest to the host in such a way as to reduce the transition moment to the pyrene “lending” state involved in the vibronic coupling.  相似文献   

19.
Preferential solvation of a solvatochromic probe has been studied in binary mixtures comprising of a non-protic and a protic solvent. The non-protic solvents employed are carbon tetrachloride (CCl(4)), acetonitrile (AcN) and N,N-dimethyl formamide (DMF) and the protic solvents are methanol (MeOH) and ethanol (EtOH). The probe molecule exhibits different spectroscopic characteristics depending upon the properties of the solubilizing media. The observed spectral features provide an indication of the microenvironment immediately surrounding the probe. Solvatochromic shifts of the ground and excited states of the probe were analysed by monitoring the charge transfer absorption band and the fluorescence emission spectra in terms of the solute-solvent and solvent-solvent interactions. Fluorescence emission spectra show the dual emission due to excited state proton transfer nature of the probe molecule. The effect of solvent and the excitation energy on dual emission are also studied. The observed magnitude of the Stokes shift in the above solvents has been used to deduce experimentally the dipole moment ratio of the probe molecule for the excited state to the ground state. The dipole moment of excited state is higher than the ground state.  相似文献   

20.
Standard molecular and driven molecular dynamics are used to analyze prominent spectral features in the H5O2+ infrared spectrum. In the driven method, the molecular Hamiltonian is augmented with a time-dependent term, mu x epsilon(0) sin(omegat), where mu is the dipole moment of H5O2+, epsilon0 is the electric field, and omega is the frequency. The magnitude of the electric field determines whether the driving is mild (the harmonic limit) or strong (anharmonic motion and mode coupling). We analyze the spectrum in the wavenumber range from 600 to 1900 cm(-1), where recent experimental measurements are available for H5O2+. On the basis of the simulations, we have assigned the broad feature around 1000 cm(-1) to the proton transfer coupled with the torsion motion. Intense absorption near 1780 cm(-1) is assigned to the H2O monomer bend coupled with proton transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号