首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New expected biologically active complexes for some of the first (Mn (II), Ni (II), Cu (II) and Zn (II)) and second (Rh (III) and Cd (II)) transitional metals rows with N-(2-Aminoethyl)-1,3-propanediamine as a ligand (AEPD)have been synthesized. All synthesized complexes were formed with 1:1 (metal: AEPD) stoichiometry except Ni (II) 1:2 (Ni: AEPD). The compounds were characterized by different analysis tools such as; elemental analysis, Fourier transform infrared (FTIR), 1H-NMR, mass spectra, thermal analysis, electronic spectra, magnetic measurement and molar conductance techniques. AEPD ligand interacted with all metal ions as tridentate ligand by using the nitrogen atoms. On the other hand, density functional theory (DFT) calculations have been performed to confirm the optimized geometrical structures for both AEPD and its complexes. Furthermore, coordination compounds were screened for their potential antibacterial activities against six pathogenic bacteria as well as one kind of fungi in comparison to standard antibiotics by agar well diffusion method. The results show that most of the complexes exhibit antibacterial and antifungal activities against these organisms. Rh (III)-AEPD complex exhibited the strongest antibacterial effect followed by the Cd (II) complex but as antifungal agents Cd (II) was the first and the second was Rh (III). Also, the anticancer activity was screened for these metal complexes against growth of human liver cancer HEPG2 tumor cell line and this inhibition activity of Cd (II) chelate was noticed to be more active with lowest IC50 than that of all other synthesized complexes. Unfortunately, Mn (II) and Rh (III) chelates lacked anticancer activity. The docking active sites interactions were evaluated using the selected protein for anticancer activity. Finally, antioxidant activity was studied. Mn (AEPD) showed maximum activity followed by complex of Rh (III).  相似文献   

2.
A new series of transition metal complexes of Schiff base isonicotinic acid (2-hydroxybenzylidene)hydrazide, HL, have been synthesized. The Schiff base reacted with Cu(II), Ni(II), Co(II), Mn(II), Fe(III) and UO2(II) ions as monobasic tridentate ligand to yield mononuclear complexes of 1:2 (metal:ligand) except that of Cu(II) which form complex of 1:1 (metal:ligand). The ligand and its metal complexes were characterized by elemental analyses, IR, UV-vis, mass and 1H NMR spectra, as well as magnetic moment, conductance measurements, and thermal analyses. All complexes have octahedral configurations except Cu(II) complex which has an extra square planar geometry distorted towards tetrahedral. While, the UO2(II) complex has its favour hepta-coordination. The ligand and its metal complexes were tested against one strain Gram +ve bacteria (Staphylococcus aureus), Gram -ve bacteria (Escherichia coli), and Fungi (Candida albicans). The tested compounds exhibited higher antibacterial activities.  相似文献   

3.
Coordination compounds of Mn (II), Fe (III), Co (II), Ni (II), Cu (II) and Cd (II) ions were synthesized from reaction with Schiff base ligand 4,6‐bis((E)‐(2‐(pyridin‐2‐yl)ethylidene)amino)pyrimidine‐2‐thiol (HL) derived from the condensation of 4,6‐diaminopyrimidine‐2‐thiol and 2‐(pyridin‐2‐yl)acetaldehyde. Microanalytical data, magnetic susceptibility, infrared and 1H NMR spectroscopies, mass spectrometry, molar conductance, powder X‐ray diffraction and thermal decomposition measurements were used to determine the structure of the prepared complexes. It was found that the coordination between metal ions and bis‐Schiff base ligand was in a molar ratio of 1:1, with formula [M (HL)(H2O)2] Xn (M = Mn (II), Co (II), Ni (II), Cu (II) and Cd (II), n = 2; Fe (III), n = 3). Diffuse reflectance spectra and magnetic susceptibility measurements suggested an octahedral geometry for the complexes. The coordination between bis‐Schiff base ligand and metal ions was through NNNN donor sites in a tetradentate manner. After preparation of the complexes, biological studies were conducted using Gram‐positive (B. subtilis and S. aureus) and Gram‐negative (E. coli and P. aeruginosa) organisms. Metal complexes and ligand displayed acceptable microbial activity against both types of bacteria.  相似文献   

4.
Novel Schiff base ligand based on the condensation of 4,6-diacetyl resorcinol with 2-amino-4-methylthiazole in addition to its metal complexes with Cr (III), Mn (II), Fe (III), Co (II), Ni (II), Cu (II), Zn (II) and Cd (II) ions have been synthesized. The structure, electronic properties, and thermal behaviour of Schiff base and its metal complexes have been studied by elemental analysis, mass, 1H NMR, IR spectra, thermal analysis, and theoretically by density function theory. The ligand acted as mononegative bidentate (NO) ligand and all complexes showed octahedral geometry except Cu (II) showed tetrahedral geometry as indicated from the spectral and magnetic studies. The Cu (II), Zn (II) and Cd (II) complexes were non electrolytes while the rest of the complexes were electrolytes. The antibacterial plus anticancer activities of the parent Schiff base and its metal complexes were screened. In addition, the molecular docking study was performed to explore the possible ways for binding to Crystal Structure of Human Astrovirus capsid protein (5ibv) receptor.  相似文献   

5.
The condensation of 2‐acetylferrocene with 4‐nitro‐1,2‐phenylenediamine in a 1:1 molar ratio, resulting in formation of a novel bi‐dentate organometallic Schiff base ligand (L), (2‐(1‐((2‐amino‐5‐nitrophenyl)imino)ethyl)cyclopenta‐2,4‐dien‐1‐yl)(cyclopenta‐2,4‐dien‐1‐yl)iron. Also, its Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes have been synthesized. The stoichiometric ratios of the prepared compounds were estimated using elemental analysis (C, H, N, M), molar conductivity, FT‐IR, UV‐Vis, 1H‐NMR, SEM and mass spectral analysis. Furthermore, their TG and DTG properties were studied. The geometrical structure of the complexes was found to be octahedral. From spectral analysis, the Schiff base coordinated to metal ions through the azomethine and amine groups. DFT‐based molecular orbital energy calculations of the synthesized ligand have been studied, in which the ligand was theoretically optimized. The Schiff base and its metal complexes have been screened for their antimicrobial activities against different bacterial and fungal species by using disc diffusion method. The anticancer activities of the ligand and its metal complexes have also been studied towards breast cancer (MCF‐7) and human normal melanocytes (HFB‐4) cell lines. Molecular docking was also used to identify the interaction between the Schiff base ligand and its Cd(II) complex with the active site of the receptors of breast cancer mutant oxidoreductase (PDB ID: 3HB5), crystal structure of Staphylococcus aureus (PDB ID: 3Q8U) and yeast‐specific serine/threonine protein phosphatase (PPZ1) of Candida albicans (PDB ID:5JPE).  相似文献   

6.
Series of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes were prepared with tetradentate Schiff base ligand derived by condensation of 2‐aminophenol with dibenzoylmethane. The novel Schiff base H2L (2–2′‐((1Z,1Z’)‐(1,3‐diphenyl propane‐1,3 diylidene) bis (azanylylidene) diphenol) and its binary metal complexes were characterized by physicochemical procedures i.e. elemental analysis, FT‐IR, UV–Vis, thermal analyses (TGA/DTG), mass spectrometry, magnetic susceptibility and conductometric measurements. On the basis of these studies, an octahedral geometry for all these complexes was proposed expect Ni(II) complex which had tetrahedral geometry. Molar conductivity values revealed that the complexes were electrolytes except Mn(II), Zn(II) and Cd(II) complexes were non electrolytes. The ligand bound to the metal ions via two azomethine N and two phenolic OH as indicated from the IR and 1H NMR spectral study. The molecular and electronic structures of H2L and its zinc complex were optimized theoretically and the quantum chemical parameters were calculated. The antimicrobial activity against a number of bacterial organisms as Streptococcus pneumonia, Bacillus Subtilis, Pseudomonas aeruginosa and Escherichia coli and fungi as Aspergillus fumigates, Syncephalastrum racemosum, Geotricum candidum and Candida albicans by disk diffusion method were screened for the Schiff base and its complexes. The Cd(II) complex has potent antimicrobial activity. Anticancer activity of the Schiff base ligand and its metal complexes were evaluated in human cancer (MCF‐7 cells viability). The Cr(III) complex exhibited higher activity than other complexes and ligand. Molecular docking was used to predict the binding between Schiff base ligand (H2L) and its Zn(II) complex and the receptors of RNA of amikacin antibiotic (4P20) and human‐DNA‐Topo I complex (1SC7). The docking study provided useful structural information for inhibition studies.  相似文献   

7.
A new Schiff base derived from the condensation of 2‐acetylferrocene with l ‐histidine was prepared and characterized using elemental analyses and spectroscopic methods. Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes of the Schiff base were prepared and characterized using various physicochemical methods such as elemental analysis, Fourier transform infrared and UV–visible spectroscopies, molar conductance, thermal analysis and scanning electron microscopy (SEM). Both ligand and complexes were investigated for their biological and anticancer activities. The elemental analyses showed that complexes were formed in a metal‐to‐ligand ratio of 1:1 stoichiometry. The spectral analyses proved that the ligand was tridentate and all complexes had an octahedral geometry, except the Zn(II) complex that was tetrahedral. SEM showed that the ligand and its Cd(II) complex were of nanometric structure. The molecular and electronic structure of the free ligand was optimized theoretically and the quantum chemical parameters were calculated. The molecular structure can be used to investigate the coordination sites and the total charge density around each atom. According to anticancer studies, Cd(II) complex was recommended to be used as anti‐breast cancer drug as it had very low IC50 (3.5 μg ml?1). Molecular docking was used to predict the binding between the free ligand and its Cd(II) complex and crystal structure of Staphylococcus aureus (PDB ID: 3Q8u), receptors of breast cancer mutant oxidoreductase (PDB ID: 3Hb5) and crystal structure of Escherichia coli (PDB ID: 3 T88) and to identify the binding mode and the crucial functional groups interacting with the three proteins.  相似文献   

8.
Schiff base (L) ligand is prepared via condensation of pyridine-2,6-dicarboxaldehyde with -2-aminopyridine. The ligand and its metal complexes are characterized based on elemental analysis, mass, IR, solid reflectance, magnetic moment, molar conductance, and thermal analyses (TG, DTG and DTA). The molar conductance reveals that all the metal chelates are non-electrolytes. IR spectra shows that L ligand behaves as neutral tridentate ligand and bind to the metal ions via the two azomethine N and pyridine N. From the magnetic and solid reflectance spectra, it is found that the geometrical structures of these complexes are octahedral (Cr(III), Fe(III), Co(II), Ni(II), Cu(II), and Th(IV)) and tetrahedral (Mn(II), Cd(II), Zn(II), and UO2(II)). The thermal behaviour of these chelates shows that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as, E*, ΔH*, ΔS* and ΔG* are calculated from the DTG curves using Coats-Redfern method. The synthesized ligand, in comparison to their metal complexes also was screened for its antibacterial activity against bacterial species, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus pyogones and Fungi (Candida). The activity data shows that the metal complexes to be more potent/antibacterial than the parent Schiff base ligand against one or more bacterial species.  相似文献   

9.
The complexes of Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II), dioxouranium(VI), and Th (IV) with a new Schiff base, 3-[(Z)-5-amino-1,3,3-trimethyl cyclohexylmethylimino]-1,3-dihydroindol-2-one formed by the condensation of isatin (Indole-2.3-dione) with isophoronediamine(5-amino-1,3,3-trimethyl-cyclohexane methylamine) (IPDA) was synthesized and characterized by microanalysis, conductivity, UV-visi-ble, FT-IR, 1 H NMR,TGA, and magnetic susceptibility measurements. All the complexes exhibit 1: 1 metal to ligand ratio except for the dioxouranium(VI) and thorium(IV) complexes, where the metal: ligand stoichiometry is 1: 2. The spectral data revealed that the ligand acts as monobasic bidentate, coordinating to the metal ion through the azomethine nitrogen and carbonyl oxygen of the isatin moiety. Tetrahedral geometry for Co(II), Ni(II), Zn(II), Cd(II), and Hg(II) complexes, square planar geometry for Cu(II) complexes, and the coordination numbers 6 and 8 for UO2(VI) and Th(IV) complexes, respectively, are proposed. Both the ligand and the metal complexes were screened for their antibacterial activity against Bacillus subtilis, Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Pseudomonas aeruginosa, and the complexes are more potent bactericides than the ligand. The anthelmentic activity of the ligand and its complexes against earthworms was also investigated. This article was submitted by the authors in English.  相似文献   

10.
A novel bidentate Schiff base ligand (L) and some d‐transition metal chelates (Cr (III), Mn (II), Fe (III), Co (II), Ni (II), Cu (II), Zn (II) and Cd (II)) were synthesized and characterized using various physicochemical and spectroscopic techniques like elemental analysis, IR, mass, UV–visible and thermal analysis. The spectroscopic data suggested that the parent Schiff base ligand coordinated to the metal ions through both imine nitrogen atoms. The molecular and electronic structure of the free ligand was optimized theoretically, and the quantum chemical parameters were calculated. The molecular structure can be used to investigate the coordination sites and the total charge density around each atom. The free ligand and its complexes were screened for their antimicrobial activities for various pathogenic bacteria and fungi. The anticancer activities of the free ligand, Cr (III), Mn (II) and Fe (III) complexes were screened against MCF‐7 cell line and found that Mn (II) complex has the lowest IC50 (15.90 μg/ml). Molecular docking was used to predict the binding between the free ligand with receptor of mutant human androgen (ARccr) derived from androgen‐independent prostate cancer (1GS4), crystal structure of yeast‐specific serine/threonine protein phosphatase (ppz1) of Candida Albicans (5JPE) and crystal structure of renal tumor suppressor protein, folliculin (3 V42) and to identify the binding mode and the crucial functional groups interacting with the three proteins.  相似文献   

11.
Two new Schiff base ligands (L1, L2) have been prepared from the reaction of 2,6-diacetylpyridine and 2-pyridinecarboxyaldehyde with 4-amino-2,3-dimethyl-1-phenyl-3-pyrozolin-5-on, and their Co(II), Cu(II), Ni(II), Mn(II), and Cr(III) metal complexes have also been prepared. The complexes are formed by coordination of N and O atoms of the ligands. Their structures were characterized by physico-chemical and spectroscopic methods. The analytical data shows that the metal to ligand ratio in the Schiff base complexes is 1:2. The Schiff base ligands and all complexes were evaluated for their in vitro antibacterial and antifungal activities by the disc diffusion method. In addition, the genotoxic properties of the ligands were studied.  相似文献   

12.
Synthesis of a new Schiff base derived from 2-hydroxy-5-methylacetophenone and glycine and its coordination with compounds Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), and UO2(VI) are described. The ligand and complexes have been characterized on the basis of analytical, electrical conductance, infrared, ESR and electronic spectra, magnetic susceptibility measurements, and thermogravimetric analysis. The ligand is a dibasic tridentate (ONO) donor in all the complexes except Zn(II), where it is a monobasic bidentate (OO) donor. The solid state DC electrical conductivity of ligand and its complexes have been measured over 313–398 K, and the complexes were semiconducting. Antibacterial activities of ligand and its metal complexes have been determined by screening the compounds against various Gram (+) and Gram (?) bacterial strains.  相似文献   

13.
A novel bidentate Schiff base ligand (HL, Nanobidentate Ferrocene based Schiff base ligand L (has one replaceable proton H)) was prepared via the condensation of 2‐amino phenol with 2‐acetyl ferrocene. The ligand was characterized using elemental analysis, mass spectrometry, infrared (IR) spectroscopy, 1proton nuclear magnetic resonance (H‐NMR) spectroscopy, scanning electron microscopy (SEM), and thermal analysis. The corresponding 1:1 metal complexes with some transition‐metal ions were additionally characterized by their elemental analysis, molar conductance, SEM, and thermogravimetric ana1ysis (TGA). The complexes had the general formula [M(L)(Cl)(H2O)3]xCl·nH2O (M = Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II)), (x = 0 for Mn(II), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II), x = 1 for Cr(III) and Fe(III)), (n = 1 for Cr(III), n = 3 for Mn(II) and Co(II), n = 4 for Fe(III), Ni(II), Cu(II), Zn(II), and Cd(II)). Density functional theory calculations on the HL ligand were also carried out in order to clarify molecular structures by the B31YP exchange‐correlation function. The results were subjected to molecular orbital diagram, highest occupied mo1ecu1ar orbital–lowest occupied molecular orbital, and molecular electrostatic potential calculations. The parent Schiff base and its eight metal complexes were assayed against four bacterial species (two Gram‐negative and two‐Gram positive) and four different antifungal species. The HL ligand was docked using molecular operating environment 2008 with crystal structures of oxidoreductase (1CX2), protein phosphatase of the fungus Candida albicans (5JPE), Gram(?) bacteria Escherichia coli (3T88), Gram(+) bacteria Staphylococcus aureus (3Q8U), and an androgen‐independent receptor of prostate cancer (1GS4). In order to assess cytotoxic nature of the prepared HL ligand and its complexes, the compounds were screened against the Michigan cancer foundation (MCF)‐7 breast cancer cell line, and the IC50 values of compounds were calculated.  相似文献   

14.
A novel Schiff base namely (E)-3-((2,6-dihydroxypyrimidin-4-ylimino)methyl)-4H-chromen-4-one and its Co (II), N (II)i, Cu (II) and Cd (II) complexes have been synthesized and proved by elemental analysis, molar conductance, thermal analysis (TGA), Inductive Coupled plasma (ICP), magnetic moment measurements, X-ray powder diffraction, IR, EI-mass,1H NMR, 13C NMR,UV–Vis. and ESR spectral studies. On the basis of these data, it is evident that the Schiff base acts as bidentate via oxygen atom of carbonyl group and azomethine nitrogen atom for Co (II) complex; monobasic bidentate ligand for Ni (II), Cu (II) and Cd (II) complexes via oxygen atom of hydroxyl group and nitrogen atom of pyrimidine ring. The results showed all complexes have octahedral geometry. The average particle size of the ligand and its complexes were found to be 1.010–0.343 nm. The pharmacological action (antioxidant, antimicrobial and anticancer) of the prepared compounds is studied. The antitumor activity of the ligand and its metal complexes is evaluated against human liver carcinoma (HEPG2) cell. The data displayed the Co (II) complexes strong cytotoxicity where IC50 values of Co (II) complex and 5-fluorouracil (stander drug) are 9.33 and 7.86 μg/ml respectively. The Co (II) and Cd (II) complexes have antibacterial activity more than ampicillin (stander drug). The interaction of the synthesized compounds with calf-thymus DNA (CT-DNA) has been performed via absorption spectra and viscosity technique. The DNA- binding constants have been determined.  相似文献   

15.

New azodye ligand (H2L) and its relative Cr(III)-, Mn(II)-, Fe(III)-, Co(II)-, Ni(II)-, Cu(II)-, Zn(II)- and Cd(II)-nanosized complexes were prepared. A new synthesized compounds were characterized using spectral (mass, IR, UV–Vis, XRD, and ESR) and analytical (elemental, molar conductance, thermal and magnetic moment measurements) tools. Infrared spectra showed that the ligand behaves as a monobasic bidentate, coordinating with central atoms through carbonyl oxygen and α-hydroxyl group. The geometrical structures of Cr(III) and Fe(III) complexes were found to be in octahedral configuration, whereas Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes have tetrahedral forms. XRD patterns reflect an amorphous appearance of all investigated complexes. TEM images showed nanosized particles and identical distribution over the complex surface. Molecular modeling for the drug ligand and its metal ion complexes were performed using Gaussian09 program to assert on their structural formulae. Some essential parameters were extracted using HOMO and LUMO energies. AutoDock tools 4.2 was used to simulate the interaction process with infected cell proteins to expect the experimental pathway. The inhibition activity of drug ligand and its metal ion complexes was evaluated towards different types of bacteria and fungi through in vitro antimicrobial activities. The antitumor activities of all compounds are straightened towards human liver carcinoma (HEPG2) cell lines. Fe(III) and Co(II) complexes exhibited IC50 of 2.90 and 4.23 µg mL?1, respectively, which means they are more potent anticancer drug than the standard (doxorubicin, IC50 = 4.73 µg mL?1). Therefore, the two complexes may consider promising anticancer drugs.

  相似文献   

16.
New Schiff base ligand (H2L, 1,2‐bis[(2‐(2‐hydroxyphenylimino)‐methyl)phenoxy]ethane) came from condensation reaction of bisaldehyde and 2‐aminophenol was synthesized in a molar ratio 1:2. Metal complexes and the ligand were completely discussed with spectroscopic and theoretical mechanism. The complexes with Fe(III), Cr(III), Mn(II), Co(II), Cu(II), Ni(II), Th(IV) and Zn(II) have been discussed and characterized by elemental analyses, molar conductance, IR, mass spectroscopy, thermal, magnetic measurements, and 1H NMR. The results proved that the Schiff base was a divalent anion with hexadentate O4N2 donors came from the etheric oxygens (O1, O2), azomethine nitrogens (N1, N2) and deprotonated phenolic oxygens (O3, O4). Density Functional Theory using (B3LYP/6‐31G*) level of theory were implemented to predict molecular geometry, Mulliken atomic energetic and charges of the ligand and complexes. The calculation display that complexes had weak field ligand. The binding energy ranged from 650.5 to 1499.0 kcal/mol for Mn(II) and Th(IV) complexes, respectively. The biological behavior of the Schiff base ligand and its metal complexes were displayed against bacteria and fungi organisms. Fe(III) complex gave remarkable biological activity in comparison with the parent bis Schiff base.  相似文献   

17.
A novel tetradentate azo‐Schiff base ligand (H2L) was synthesized by 2:1 molar condensation of an azo‐aldehyde and ethylenediamine. Its mononuclear Cu(II), Ni(II), Co(II) and Zn(II) complexes were prepared and their structures were confirmed using elemental analysis, NMR, infrared and UV–visible spectroscopies and molar conductivity measurements. The results suggest that the metal ion is bonded to the tetradentate ligand through phenolic oxygens and imine nitrogens of the ligand. The solid‐state structures of the azo‐Schiff base ligand and its Cu(II) complex were determined using single‐crystal X‐ray diffraction studies. The azo‐Schiff base ligand lies on a crystallographic inversion centre and thus the asymmetric unit contains half of the molecule. X‐ray data revealed that keto–amine tautomer is favoured in the solid‐state structure of the ligand. In the structure of the Cu(II) complex, the Cu(II) ion is coordinated to two phenolate oxygen atoms and two imine nitrogen atoms of the azo‐Schiff base ligand with approximate square planar geometry. The anticancer activity of the synthesized complexes was investigated for human cancer cell line (MCF‐7) and cytotoxicity of the synthesized compounds was determined against mouse fibroblast cells (L929). The ligand and its complexes were found to show antitumor activity. The synthesized metal complexes were optimized at the B3LYP/LANL2DZ level and a new theoretical formula for MCF‐7 cells was also derived.  相似文献   

18.
In this work, (Z)‐N‐benzoyl‐N′‐(1H‐1,2,4‐triazol‐3‐yl)carbamimidothioic acid and its Mn(II), Co(II), Cu(II) and Cd(II) complexes were introduced for the first time. This carbonyl thiourea ligand was prepared by the reaction of 1H‐1,2,4‐triazol‐3‐amine with benzoyl isothiocyanate. The structural elucidation of these compounds was performed using elemental analysis and spectral and magnetic measurements. Octahedral structures of all complexes, except Cd(II) complex with a tetrahedral geometry, were confirmed by applying DFT structural optimization. The thermal decomposition behaviour of metal complexes of carbonyl thiourea ligand is discussed. The calculation of kinetic parameters for prepared complexes (Ea, A, ΔH*, ΔS* and ΔG*) of all thermal degradation stages has been evaluated using two comparable approaches. Antimicrobial and ABTS‐antioxidant studies indicated potent activity of Cd(II) complex compared with the other investigated compounds. The cytotoxic activity of the prepared compounds was investigated in vitro. The results indicated potent activity of Mn(II) complex against both HePG2 (liver carcinoma) and MCF‐7 (breast carcinoma) cancer cells.  相似文献   

19.
A new Schiff base was prepared as the condensation product of the reaction of 2‐quinoline carboxaldehyde and ambroxol drug. The Schiff base ligand thus obtained (HL; trans‐4‐[(2‐(2‐quinolinoimino)‐3,5‐dibromobenzyl)amino]cyclohexanol) was further employed as a tridentate ligand for the synthesis of new complexes through reaction with Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) metal ions. The synthesized HL and its metal complexes were characterized using various physicochemical techniques including elemental analysis, Fourier transform infrared and UV–visible spectroscopies, conductimetric and magnetic susceptibility measurements, mass spectrometry and thermal analyses. 1H NMR data indicated that complex formation was through the amino group rather than the aliphatic hydroxyl group. Thermal analysis gave an idea about the decomposition pattern of HL and its complexes. Also, it revealed the number of water molecules in the inner and outer spheres of the complexes. An octahedral geometry for all the complexes has been suggested. HL and its complexes were screened for their antimicrobial activity against various species of bacteria and fungi using the disc diffusion method. The Cr(III) complex had the highest antimicrobial activity.  相似文献   

20.
A novel Schiff base ligand (H2L) was prepared through condensation of 2,6‐diaminopyridine and o‐benzoylbenzoic acid in a 1:2 ratio. This Schiff base ligand was characterized using elemental and spectroscopic analyses. A new series of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) metal complexes of H2L were prepared and characterized using elemental analysis, spectroscopy (1H NMR, mass, UV–visible, Fourier transform infrared, electron spin resonance), magnetic susceptibility, molar conductivity, X‐ray powder diffraction and thermal analysis. The complexes are found to have trigonal bipyramidal geometry except Cr(III), Mn(II) and Fe(III) complexes which have octahedral geometry based on magnetic moment and solid reflectance measurements. The infrared spectral studies reveal that H2L behaves as a neutral bidentate ligand and coordinates to the metal ions via the two azomethine nitrogens. 1H NMR spectra confirm the non‐involvement of the carboxylic COOH proton in complex formation. The presence of water molecules in all reported complexes is supported by thermogravimetric studies. Kinetic and thermodynamic parameters were determined using Coats–Redfern and Horowitz–Metzger equations. The synthesized ligand and its complexes were screened for antimicrobial activities against two Gram‐positive bacteria (Bacillus subtilis and Staphylococcus aureus), two Gram‐negative bacteria (Escherichia coli and Neisseria gonorrhoeae) and one fungus (Candida albicans). Anticancer activities of the ligand and its metal complexes against human breast cancer cell line (MCF7) were investigated. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号