首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The general synthesis and control of the coordination environment of single‐atom catalysts (SACs) remains a great challenge. Herein, a general host–guest cooperative protection strategy has been developed to construct SACs by introducing polypyrrole (PPy) into a bimetallic metal–organic framework. As an example, the introduction of Mg2+ in MgNi‐MOF‐74 extends the distance between adjacent Ni atoms; the PPy guests serve as N source to stabilize the isolated Ni atoms during pyrolysis. As a result, a series of single‐atom Ni catalysts (named NiSA‐Nx‐C) with different N coordination numbers have been fabricated by controlling the pyrolysis temperature. Significantly, the NiSA‐N2‐C catalyst, with the lowest N coordination number, achieves high CO Faradaic efficiency (98 %) and turnover frequency (1622 h?1), far superior to those of NiSA‐N3‐C and NiSA‐N4‐C, in electrocatalytic CO2 reduction. Theoretical calculations reveal that the low N coordination number of single‐atom Ni sites in NiSA‐N2‐C is favorable to the formation of COOH* intermediate and thus accounts for its superior activity.  相似文献   

2.
《中国化学快报》2022,33(8):3721-3725
Self-supported transition-metal single-atom catalysts (SACs) facilitate the industrialization of electrochemical CO2 reduction, but suffer from high structural heterogeneity with limited catalytic selectivity. Here we present a facile and scalable approach for the synthesis of self-supported nickel@nitrogen-doped carbon nanotubes grown on carbon nanofiber membrane (Ni@NCNTs/CFM), where the Ni single atoms and nanoparticles (NPs) are anchored on the wall and inside of nitrogen-doped carbon nanotubes, respectively. The side effect of Ni NPs was further effectively inhibited by alloying Ni with Cu atoms to alter their d-band center, which is theoretically predicted and experimentally proved. The optimal catalyst Ni9Cu1@NCNTs/CFM exhibits an ultrahigh CO Faradic efficiency over 97% at ?0.7 V versus reversible hydrogen electrode. Additionally, this catalyst shows excellent mechanical strength which can be directly used as a self-supporting catalyst for Zn-CO2 battery with a peak power density of ~0.65 mW/cm2 at 2.25 mA/cm2 and a long-term stability for 150 cycles. This work opens up a general avenue to facilely prepare self-supported SACs with unitary single-atom site for CO2 utilization.  相似文献   

3.
Single-atom catalysts (SACs) are of great interest because of their ultrahigh activity and selectivity. However, it is difficult to construct model SACs according to a general synthetic method, and therefore, discerning differences in activity of diverse single-atom catalysts is not straightforward. Herein, a general strategy for synthesis of single-atom metals implanted in N-doped carbon (M1-N-C; M=Fe, Co, Ni and Cu) has been developed starting from multivariate metal–organic frameworks (MOFs). The M1-N-C catalysts, featuring identical chemical environments and supports, provided an ideal platform for differentiating the activity of single-atom metal species. When employed in electrocatalytic CO2 reduction, Ni1-N-C exhibited a very high CO Faradaic efficiency (FE) up to 96.8 % that far surpassed Fe1-, Co1- and Cu1-N-C. Remarkably, the best-performer, Ni1-N-C, even demonstrated excellent CO FE at low CO2 pressures, thereby representing a promising opportunity for the direct use of dilute CO2 feedstock.  相似文献   

4.
Designing novel single-atom catalysts (SACs) supports to modulate the electronic structure is crucial to optimize the catalytic activity, but rather challenging. Herein, a general strategy is proposed to utilize the metalloid properties of supports to trap and stabilize single-atoms with low-valence states. A series of single-atoms supported on the surface of tungsten carbide (M-WCx, M=Ru, Ir, Pd) are rationally developed through a facile pyrolysis method. Benefiting from the metalloid properties of WCx, the single-atoms exhibit weak coordination with surface W and C atoms, resulting in the formation of low-valence active centers similar to metals. The unique metal-metal interaction effectively stabilizes the low-valence single atoms on the WCx surface and improves the electronic orbital energy level distribution of the active sites. As expected, the representative Ru-WCx exhibits superior mass activities of 7.84 and 62.52 A mgRu−1 for the hydrogen oxidation and evolution reactions (HOR/HER), respectively. In-depth mechanistic analysis demonstrates that an ideal dual-sites cooperative mechanism achieves a suitable adsorption balance of Had and OHad, resulting in an energetically favorable Volmer step. This work offers new guidance for the precise construction of highly active SACs.  相似文献   

5.
Single atom catalysts(SACs) have become the frontier research fields in catalysis. The M1-Nx-Cybased SACs, wherein single metal atoms(M1) are stabilized by N-doped carbonaceous materials, have provided new opportunities for catalysis due to their high reactivity, maximized atomic utilization, and high selectivity. In this review, the fabrication methods of M1-Nx-Cybased SACs via support anchoring strategy and coordination design strategy are summarized to help the readers understand the interact...  相似文献   

6.
Amongst various Fenton-like single-atom catalysts (SACs), the zinc (Zn)-related SACs have been barely reported due to the fully occupied 3d10 configuration of Zn2+ being inactive for the Fenton-like reaction. Herein, the inert element Zn is turned into an active single-atom catalyst (SA−Zn−NC) for Fenton-like chemistry by forming an atomic Zn−N4 coordination structure. The SA−Zn−NC shows admirable Fenton-like activity in organic pollutant remediation, including self-oxidation and catalytic degradation by superoxide radical (O2) and singlet oxygen (1O2). Experimental and theoretical results unveiled that the single-atomic Zn−N4 site with electron acquisition can transfer electrons donated by electron-rich pollutants and low-concentration PMS toward dissolved oxygen (DO) to actuate DO reduction into O2 and successive conversion into 1O2. This work inspires an exploration of efficient and stable Fenton-like SACs for sustainable and resource-saving environmental applications.  相似文献   

7.
The electrochemical CO2 reduction reaction (CO2RR) is viewed as a promising way to remove the greenhouse gas CO2 from the atmosphere and convert it into useful industrial products such as methane, methanol, formate, ethanol, and so forth. Single-atom site catalysts (SACs) featuring maximum theoretical atom utilization and a unique electronic structure and coordination environment have emerged as promising candidates for use in the CO2RR. The electronic properties and atomic structures of the central metal sites in SACs will be changed significantly once the types or coordination environments of the central metal sites are altered, which appears to provide new routes for engineering SACs for CO2 electrocatalysis. Therefore, it is of great importance to discuss the structural regulation of SACs at the atomic level and their influence on CO2RR activity and selectivity. Despite substantial efforts being made to fabricate various SACs, the principles of regulating the intrinsic electrocatalytic performances of the single-atom sites still needs to be sufficiently emphasized. In this perspective article, we present the latest progress relating to the synthesis and catalytic performance of SACs for the electrochemical CO2RR. We summarize the atomic-level regulation of SACs for the electrochemical CO2RR from five aspects: the regulation of the central metal atoms, the coordination environments, the interface of single metal complex sites, multi-atom active sites, and other ingenious strategies to improve the performance of SACs. We highlight synthesis strategies and structural design approaches for SACs with unique geometric structures and discuss how the structure affects the catalytic properties.

Electrochemical CO2 reduction reaction (CO2RR) is a promising way to remove CO2 and convert it into useful industrial products. Single-atom site catalysts provide opportunities to regulate the active sites of CO2RR catalysts at the atomic level.  相似文献   

8.
Precise manipulation of the coordination environment of single-atom catalysts (SACs), particularly the simultaneous engineering of multiple coordination shells, is crucial to maximize their catalytic performance but remains challenging. Herein, we present a general two-step strategy to fabricate a series of hollow carbon-based SACs featuring asymmetric Zn−N2O2 moieties simultaneously modulated with S atoms in higher coordination shells of Zn centers (n≥2; designated as Zn−N2O2−S). Systematic analyses demonstrate that the synergetic effects between the N2O2 species in the first coordination shell and the S atoms in higher coordination shells lead to robust discrete Zn sites with the optimal electronic structure for selective O2 reduction to H2O2. Remarkably, the Zn−N2O2 moiety with S atoms in the second coordination shell possesses a nearly ideal Gibbs free energy for the key OOH* intermediate, which favors the formation and desorption of OOH* on Zn sites for H2O2 generation. Consequently, the Zn−N2O2−S SAC exhibits impressive electrochemical H2O2 production performance with high selectivity of 96 %. Even at a high current density of 80 mA cm−2 in the flow cell, it shows a high H2O2 production rate of 6.924 mol gcat−1 h−1 with an average Faradaic efficiency of 93.1 %, and excellent durability over 65 h.  相似文献   

9.
The electrochemical CO2 reduction (CO2RR) is a sustainable approach to mitigate the increased CO2 emissions and simultaneously produce value-added chemicals and fuels. Metal-nitrogen-carbon (M-N-C) based single-atom catalysts (SACs) have emerged as promising electrocatalysts for CO2RR with high activity, selectivity, and stability. To design efficient SACs for CO2RR, the key influence factors need to be understood. Here, we summarize recent achievements on M-N-C SACs for CO2RR and highlight the significance of the key constituting factors, metal sites, the coordination environment, and the substrates, for achieving high CO2RR performance. The perspective views and guidelines are provided for the future direction of developing M-N-C SACs as CO2RR catalysts.  相似文献   

10.
Carbon‐supported NiII single‐atom catalysts with a tetradentate Ni‐N2O2 coordination formed by a Schiff base ligand‐mediated pyrolysis strategy are presented. A NiII complex of the Schiff base ligand (R,R)‐(?)‐N,N′‐bis(3,5‐di‐tert‐butylsalicylidene)‐1,2‐cyclohexanediamine was adsorbed onto a carbon black support, followed by pyrolysis of the modified carbon material at 300 °C in Ar. The Ni‐N2O2/C catalyst showed excellent performance for the electrocatalytic reduction of O2 to H2O2 through a two‐electron transfer process in alkaline conditions, with a H2O2 selectivity of 96 %. At a current density of 70 mA cm?2, a H2O2 production rate of 5.9 mol gcat.?1 h?1 was achieved using a three‐phase flow cell, with good catalyst stability maintained over 8 h of testing. The Ni‐N2O2/C catalyst could electrocatalytically reduce O2 in air to H2O2 at a high current density, still affording a high H2O2 selectivity (>90 %). A precise Ni‐N2O2 coordination was key to the performance.  相似文献   

11.
Single-atom catalysts (SACs) have emerged as crucial players in catalysis research, prompting extensive investigation and application. The precise control of metal atom nucleation and growth has garnered significant attention. In this study, we present a straightforward approach for preparing SACs utilizing a photocatalytic radical control strategy. Notably, we demonstrate for the first time that radicals generated during the photochemical process effectively hinder the aggregation of individual atoms. By leveraging the cooperative anchoring of nitrogen atoms and crystal lattice oxygen on the support, we successfully stabilize the single atom. Our Pd1/TiO2 catalysts exhibit remarkable catalytic activity and stability in the Suzuki–Miyaura cross-coupling reaction, which was 43 times higher than Pd/C. Furthermore, we successfully depose Pd atoms onto various substrates, including TiO2, CeO2, and WO3. The photocatalytic radical control strategy can be extended to other single-atom catalysts, such as Ir, Pt, Rh, and Ru, underscoring its broad applicability.  相似文献   

12.
Developing the low-cost and efficient single-atom catalysts (SACs) for nitrogen reduction reaction (NRR) is of great importance while remains as a great challenge. The catalytic activity, selectivity and durability are all fundamentally related to the elaborate coordination environment of SACs. Using first-principles calculations, we investigated the SACs with single transition metal (TM) atom supported on defective boron carbide nitride nanotubes (BCNTs) as NRR electrocatalysts. Our results suggest that boron-vacancy defects on BCNTs can strongly immobilize TM atoms with large enough binding energy and high thermal/structural stability. Importantly, the synergistic effect of boron nitride (BN) and carbon domains comes up with the modifications of the charge polarization of single-TM-atom active site and the electronic properties of material, which has been proven to be the essential key to promote N2 adsorption, activation, and reduction. Specifically, six SACs (namely V, Mn, Fe, Mo, Ru, and W atoms embedded into defective BCNTs) can be used as promising candidates for NRR electrocatalysts as their NRR activity is higher than the state-of-the art Ru(0001) catalyst. In particular, single Mo atom supported on defective BCNTs with large tube diameter possesses the highest NRR activity while suppressing the competitive hydrogen evolution reaction, with a low limiting potential of −0.62 V via associative distal path. This work suggests new opportunities for driving NH3 production by carbon-based single-atom electrocatalysts under ambient conditions.  相似文献   

13.
Complexes of Nickel(II) with Oxalic Amidines and Oxalic Amidinates with Additonal R2P‐Donor Groups Oxalamidines R1N=C(NHR2)‐C(=NHR2)=NR1, which bear additional donor atoms at two of the four N substituents ( H2A : R1 = mesityl, R2 = ‐(CH2)3‐PPh2; H2B : R1 = tolyl, R2 = ‐(CH2)3‐PMe2) form binuclear complexes with Nickel(II) in which very different coordination modes are realized. In the complex [ (A) Ni2Br2] (1) the two nickel atoms at each side of the bridge are in a square‐planar environment, coordinated by the two N donor atoms of the oxalic amidinate framework, a bromide and a Ph2P group. An analogous coordination has the organometallic compound [ (A) Ni2Me2] (2) . In contrast, the two nickel atoms in the compound {[( B )][Ni(acac)]2} (5) differ in their coordinative environment. At one side of the oxalic amidinate bridging ligand a (acac)Ni fragment is coordinated by the two N donor atoms resulting in a square‐planar environment. At the opposite side the (acac)Ni fragment is coordinated at the both N donor ligands of the bridging ligand as well as at the two PMe2 groups of the side chains resulting in an octahedral coordination for this nickel atom.  相似文献   

14.
An end-on azido-bridged dinuclear nickel(II) complex [Ni2(L1)21,1-N3)2] · CH3COOH (I) and an end-on azido-bridged polynuclear copper(II) complex [CuL21,1-N3)] n , where L1 is the deprotonated form of 2-[(2-ethylaminoethylimino)methyl]-4-fluorophenol and L2 is the deprotonated form of 2-[(2- dimethylaminoethylimino)methyl]-4-fluorophenol, were prepared and characterized by elemental analysis and FT-IR spectra. Crystal and molecular structures of the complexes were determined by single crystal X-ray diffraction method (CIF files CCDC nos. 942641 (I) and 942642 (II)). Single crystal X-ray structural studies indicate that the Schiff base ligands coordinate to the metal atoms through phenolate oxygen, imine nitrogen, and amine nitrogen. The Ni atoms in the nickel complex are in octahedral coordination, and the Cu atoms in the copper complex are in square pyramidal coordination. Crystals of the complexes are stabilized by hydrogen bonds. The Schiff bases and the complexes showed potent antibacterial activities.  相似文献   

15.
Non-metal-based single-atom catalysts (SACs) offer low cost, simple synthesis methods, and effective regulation for substrates. Herein, we developed a simplified pressurized gas-assisted process, and report the first non-metal single-atom phosphorus with atomic-level dispersion on unique single-crystal Mo2C hexagonal nanosheet arrays with a (001) plane supported by carbon sheet (SAP-Mo2C-CS). The SAP-Mo2C-CS is structurally stable and shows exceptional electrocatalytic activity for the hydrogen evolution reaction (HER). A so-called high-active “window” based on the active sites of P atoms and their adjacent Mo atoms gives a ΔGH* close to zero for hydrogen evolution, which is the most ideal ΔGH* reported so far. Meanwhile, the moderate d-band center value of SAP-Mo2C-CS can be also used as an ideal standard value to evaluate the HER performance in non-metal-based SACs.  相似文献   

16.
Co single-atom catalysts (SACs) with good aqueous solubility and abundant labelling functional groups were prepared in Co/Fe bimetallic metal-organic frameworks by a facile solvothermal method without high-temperature calcination. In contrast to traditional chemiluminescence (CL) catalysts, Co SACs accelerated decomposition of H2O2 to produce a large amount of singlet oxygen (1O2) rather than superoxide (O2.−) and hydroxyl radical (OH.). They were found to dramatically enhance the CL emission of the luminol-H2O2 reaction by 1349 times, and, therefore, were employed as very sensitive signal probes for conducting CL immunoassay of cardiac troponin I. The detection limit of the target analyte was as low as 3.3 pg mL−1. It is the first time that employment of SACs for boosting CL reactions has been validated. The Co SACs can also be employed to trace other biorecognition events with high sensitivity.  相似文献   

17.
Carbon-supported NiII single-atom catalysts with a tetradentate Ni-N2O2 coordination formed by a Schiff base ligand-mediated pyrolysis strategy are presented. A NiII complex of the Schiff base ligand (R,R)-(−)-N,N′-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediamine was adsorbed onto a carbon black support, followed by pyrolysis of the modified carbon material at 300 °C in Ar. The Ni-N2O2/C catalyst showed excellent performance for the electrocatalytic reduction of O2 to H2O2 through a two-electron transfer process in alkaline conditions, with a H2O2 selectivity of 96 %. At a current density of 70 mA cm−2, a H2O2 production rate of 5.9 mol gcat.−1 h−1 was achieved using a three-phase flow cell, with good catalyst stability maintained over 8 h of testing. The Ni-N2O2/C catalyst could electrocatalytically reduce O2 in air to H2O2 at a high current density, still affording a high H2O2 selectivity (>90 %). A precise Ni-N2O2 coordination was key to the performance.  相似文献   

18.
The title molecule, [Ni(C6H17N3O)2](ClO4)2, possesses a crystallographic centre of symmetry at the NiII position. The coordination geometry around the NiII atom is distorted octahedral, consisting of six N atoms from two tripodal poly­amine ligands, while the ethanol O atoms of the ligands remain uncoordinated. The crystal packing shows two-dimensional layers and an infinite three-dimensional framework which is stabilized by a hydrogen-bonded network.  相似文献   

19.
Exploring advanced co-reaction accelerators with superior oxygen reduction activity that generate rich reactive oxygen species (ROS) has attracted great attention in boosting luminol-O2 electrochemiluminescence (ECL). However, tuning accelerators for efficient and selective catalytic O2 activation to switch anodic/cathodic ECL is very challenging. Herein, we report that enzyme-inspired Fe-based single-atom catalysts with axial N/C coordination structures (FeN5, FeN4© SACs) can generate specific ROS for cathodic/anodic ECL conversion. Mechanistic studies reveal that FeN5 sites prefer to produce highly active hydroxyl radicals and afford direct cathodic luminescence by promoting the cleavage of O−O bonds through N-induced electron redistribution. In contrast, FeN4© sites tend to produce superoxide radicals, resulting in inefficient anodic ECL. Benefiting from the enhanced cathodic ECL, FeN5 SAC-based immunosensor was constructed for the sensitive detection of cancer biomarkers.  相似文献   

20.
The reaction of precursors containing both nitrogen and oxygen atoms with NiII under 500 °C can generate a N/O mixing coordinated Ni-N3O single-atom catalyst (SAC) in which the oxygen atom can be gradually removed under high temperature due to the weaker Ni−O interaction, resulting in a vacancy-defect Ni-N3-V SAC at Ni site under 800 °C. For the reaction of NiII with the precursor simply containing nitrogen atoms, only a no-vacancy-defect Ni-N4 SAC was obtained. Experimental and DFT calculations reveal that the presence of a vacancy-defect in Ni-N3-V SAC can dramatically boost the electrocatalytic activity for CO2 reduction, with extremely high CO2 reduction current density of 65 mA cm−2 and high Faradaic efficiency over 90 % at −0.9 V vs. RHE, as well as a record high turnover frequency of 1.35×105 h−1, much higher than those of Ni-N4 SAC, and being one of the best reported electrocatalysts for CO2-to-CO conversion to date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号