首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
A new series of Ni(II) complexes, [Ni(L1)2] (1), [Ni(L2)2] (2), [Ni(L3)2] (3), and [Ni(L4)2] (4), were synthesized at ambient temperature. The bidentate Schiff base ligands HL1?4 have been obtained by the condensation reaction of 2-hydroxybenzaldehyde, 5-bromo-2-hydroxybenzaldehyde, 3-methoxy-2-hydroxy-benzaldehyde, and 4-methoxy-2-hydroxy-benzaldehyde, respectively, with 2-methoxyethylamine. The newly synthesized complexes were characterized by elemental analyses, FT-IR and UV–vis spectroscopy. The crystal structures of mononuclear Ni(II) complexes 2 and 3 were determined by the single-crystal X-ray diffraction technique. Electrochemical properties of the complexes were investigated in acetonitrile. The antioxidant properties of the Schiff base ligands and complexes were evaluated by two in vitro tests, DPPH radical scavenging and reducing power. The compounds were screened for their in vitro anticancer potential using gastric cancer cell lines by MTT assay. All ligands and complexes showed considerable cytotoxic activity against cancer cell lines (IC50 = 0.2516–5.468 μg·mL?1). The most promising result was achieved for complex 1 with the best IC50 value of 0.2516 μg·mL?1. It was found that the proliferation rate of MKN-45 cells decreased after treatment with the complexes in a dose-dependent way.  相似文献   

2.
New trans-disubstituted macrocyclic ligands, 1,8-[N,N-bis(3-formyl-12-hydroxy-5-methyl)benzyl]-5,12-dioxo-1,4,8,11-tetraazacyclotetradecane (L1), 1,8-[N,N-bis(3-formyl-12-hydroxy-5-bromo)benzyl]-5,12-dioxo-1,4,8,11-tetraazacyclotetradecane (L2), N,N-bis[1,8-dibenzoyl]-5,12-dioxo-1,4,8,11-tetraazacyclotetradecane (L3), N,N-bis[1,8-(2-nitrobenzoyl)]-5,12-dioxo-1,4,8,11-tetraazacyclotetradecane (L4), and N,N-bis[1,8-(4-nitrobenzoyl)]-5,12-dioxo-1,4,8,11-tetraazacyclotetradecane (L5) were synthesized. The ligands were characterized by elemental analysis, FT IR, 1H NMR and mass spectrometry studies. The crystal structure of L1 is also reported. The copper(II) and nickel(II) complexes of these ligands were prepared and characterized by elemental analysis, FT IR, UV-Vis and mass spectral studies. The cyclic voltammogram of the complexes of ligand L1-3 show one-electron quasi-reversible reduction wave in the region −0.65 to −1.13 V, whereas that of L4 and L5 show two quasi-reversible reduction peaks. Nickel(II) complexes show one electron quasi-reversible oxidation wave at a positive potential in the range +0.95 to +1.06 V. The ESR spectra of the mononuclear copper(II) complexes show four lines, characteristic of square-planar geometry with nuclear hyperfine spin 3/2. All copper(II) complexes show a normal room temperature magnetic moment value μeff 1.70-1.73 BM which is close to the spin only value of 1.73 BM. Kinetic studies on the oxidation of pyrocatechol to o-quinone using the copper(II) complexes as catalysts and hydrolysis of 4-nitrophenylphosphate using the copper(II) and nickel(II) complexes as catalysts were carried out. The ligands and their complexes were also screened for antimicrobial activity against Gram-positive, Gram-negative bacteria and human pathogenic fungi.  相似文献   

3.
The ability of La3+ ions to form stable complexes with four novel pendant-armed NxOy-macrocycles derived from 2,6-bis(2-formylphenoxymethyl)pyridine, L1, L2, L3, and L4, has been studied. The corresponding (unsubstituted) parent ligands were prepared by the reaction between 2,6-bis(2-formylphenoxymethyl)pyridine and three different amines: 1,2-bis(2-aminophenoxy)propane (L1), diethylenetriamine (L2), and 3,6-dioxa-1,8-octanediamine (L3 and L4). This was followed for the parent ligands of L1, L3, and L4 by in situ reduction with sodium borohydride. The pendant-armed ligands were then synthesized by the alkylation of the free-NH groups with p-(L1 and L3) and o-nitrobenzyl bromide (L4), and 2-chloromethylpyridine chlorohydrate (L2). A series of Ln(III) complexes were prepared for the four ligands by the direct synthesis between the corresponding macrocycle and Ln(III) hydrated nitrates and perchlorates. The number of complexes obtained from the pendant-armed macrocycles is lower than that of the (unsubstituted) parent ones, suggesting that the introduction of pendant arms in the macrocyclic skeletons increases the selectivity of the ligands. More complexes were synthesized when using nitrate as the counterion, showing the important role of the counterion in the complexation reaction. The text was submitted by the authors in English.  相似文献   

4.
Three novel ligands, a-pycolyliminoisonitrosoacetophenone (L1H · HCl), α-pycolylimino-p-methylisonitrosoacetophenone (L2H · HCl), and a-pycolylimino-p-chloroisonitrosoacetophenone L3H, were synthesized. Their metal complexes with Co(II), Cu(II), and Ni(II) were prepared. The mononuclear complexes of these ligands with Co2+, Cu2+, and Ni2+ ions were obtained in ethanol. The structures of the ligands and their complexes were characterized by 1H NMR, IR spectroscopy, elemental analyses, and magnetic susceptibility. The text was submitted by the authrs in English.  相似文献   

5.
Two new soluble phenylaminoglyoxime ligands, 4-isopropylanilinephenylglyoxime (L1H2), 4-benzylpiperidinephenylglyoxime (L2H2), were prepared by reacting 4-isopropylaniline and 4-benzylpiperidine with chlorophenylglyoxime. Mononuclear nickel(II), cobalt(II), copper(II), zinc(II), and cadmium(II) complexes with these ligands were synthesized. On the basis of the magnetic and spectral evidence a square-planar geometry for Ni(II) and Cu(II) complexes, a tedrahedral geometry for Cd(II) and Zn(II) complexes and octahedral geometry for Co(II) complexes are proposed. These compounds were elucidated by elemental analysis, IR, UV-Vis, and magnetic moments. The ligands were additionally characterized by 1H NMR and 13C NMR spectra.  相似文献   

6.
Two new ligands, 4-hydroxy coumarin-3-thiosemicarbazone (H2L1) and 4-hydroxy coumarin-3-semicarbazone (H2L2) were synthesized and used for the preparation of a series of transition metal complexes (Cr3+, Co2+, Ni2+, Cu2+, and Fe3+), derived from these ligands. These complexes have the forms [ML1Cl2nX (15) and [ML2Cl]·nX (69) (X = H2O or ethanol). The structures of these complexes were elucidated by elemental analyses, IR, UV–Vis, and electrical conductivity, as well as magnetic susceptibility measurements and thermal analyses. IR spectral data indicates that in all complexes, the ligands act as monobasic tridentate, coordinated through keto oxygen or sulfur, azomethine nitrogen and deprotonated phenolic oxygen atom. On the basis of other physicochemical investigations, tetrahedral or square planar geometries are assigned for Cu2+ complexes in monomeric structures. In the case of the Co2+, Ni2+ and Fe3+ complexes, octahedral stereochemistries in monomeric structures are suggested. The dissociation constants of the ligands and the stability constants of their Cu(II), Co(II), Ni(II), and Fe(III) complexes have been also determined using potentiometric pH-metric titration in mixed solvents of dioxane: H2O and DMF: H2O with different ratios and different temperatures.  相似文献   

7.
Four water soluble azo dyes, 4-(isopropyl)-2-[(E)-(4-chlorophenyl)diazenyl]phenol (L 1), 4-(isopropyl)-2-[(E)-(2,4-dichlorophenyl)diazenyl]phenol (L2), 4-(sec-butyl)-2-[(E)-(4-chlorophenyl) diazenyl]phenol (L 3), 4-(sec-butyl)-2-[(E)-(2,4-dichlorophenyl)diazenyl]phenol (L 4), and their Cu(II) and Ni(II) complexes were synthesized and characterized using spectroscopic methods. Examination of their thermal stability revealed similar decomposition temperature of approximately 260–300°C and that they were more thermally stable than their metal complexes. Ni(II) complexes of ligands L2 and L4 were more stable than the other coordination compounds. Among the synthesized ligands, L2 and the complexes Cu(L3)2 and Ni(L4)2 showed both antimicrobial and antifungal activity. However, the other ligands and the complexes were poorly active against selected microorganisms.  相似文献   

8.
《印度化学会志》2021,98(10):100168
The three new Cobalt(II) complexes [Co(L1)2(H2O)2] (1), [Co(L2)2(H2O)2] (2), and [Co(L3)2(H2O)2] (3) have been synthesized by interaction of acyl pyrazolone ligands, 4-(4-chlorobenzoyl)3-methyl1-phenyl1H-pyrazole5(4H)-one (HL1), 4-(4-chlorobenzoyl)1-(3-chlorophenyl)3-methyl1H-pyrazole5(4H)-one (HL2) and 5-methyl4-(4-methylbenzoyl)2-phenyl2,4-dihydro3H-pyrazole3-one (HL3) with CoCl2.6H2O. The complexes were screened using FTIR, UV–Vis, TGA, and Single Crystal X-ray diffraction spectroscopic techniques. A relative study of the ligands’ FTIR spectra and their metal complexes reveal the formation, sifting, and disappearance of several bands during complexation. Other interpretations stipulated that these three complexes are mononuclear and exhibited octahedral geometry around Co2+.Triclinic crystal system, Distortion in Octahedral geometry, and Intermolecular hydrogen bonding confirmed by Single-crystal XRD analysis of [Co(L3)2(EtOH)2] complex.  相似文献   

9.
A novel series of 17-membered complexes [MLCl2] (M = Co2+, Ni2+ and Cu2+) have been synthesized with newly derived biologically active ligands (LI–LIV). These ligands were synthesized by the condensation of 3-subtituted-4-amino-5-hydrazino-1,2,4-triazole with bis(phthalaldehyde)ethylenediamine precursor. The structure of the complexes has been proposed by elemental analyses, IR, EPR, electronic spectral studies, conductivity, magnetic, thermal and electrochemical studies. All the complexes are soluble in DMF and DMSO and are non-electrolytes. All these Schiff bases and their complexes have been screened for their antibacterial (Escherichia coli, Staphylococus aureus, Salmonella typhi, Pseudomonas aeruginosa) and antifungal activities (Aspergillus niger, Aspergillus flavus and Cladosporium) by the Agar and Potato dextrose agar diffusion method. The DNA cleavage study was done by Agarose gel electrophoresis technique.  相似文献   

10.
Three asymmetric Schiff-base tetradentate diimines H2L1, H2L2, and H2L3 [(2-OH)C6H4N=CHC6H42-N=CHC6H3(2-OH)(5-X), X?=?H, CH3, Cl respectively] have been synthesized by a two step process. The reaction of 2-hydroxy aniline with 2-nitro-benzaldehyde in EtOH gave the starting Schiff base, 2-hydroxy-N-(2-nitrobenzylidene)aniline (SB-NO2), which was reduced into the amino derivative (SB-NH2) in solution. Reacting SB-NH2 with 2-hydroxybenzaldehyde, 2-hydroxy-5-methylbenzaldehyde and 2-hydroxy-5-chlorobenzaldehyde gave the three new ligands H2L1, H2L2, and H2L3 respectively. Their dimeric, binuclear metal complexes with Ni(II) and Fe(III) have also been synthesized. The ligands and their complexes were characterized by elemental analyses, LC–MS, IR, electronic, 1H and 13C-NMR spectra, TGA, conductivity and magnetic measurements. All of the spectroscopic, analytical and other data indicate octahedral geometry M2L2(H2O)X2 (M: Ni,Co;X: Cl or H2O), except for NiL2 which is monomeric. Antimicrobial activities of the ligands and the complexes were evaluated against five bacteria. While the ligands and the Ni complexes are inactive towards Pseudomonas aeruginosa and Staphylococcus aureus, Fe complexes are active; only Fe complexes are inactive against Escherichia coli. All of the compounds have antimicrobial activities against Bacillus subtilis, and Yersinia enterecolitica.  相似文献   

11.
Four tridentate ONS ligands, namely 2-hydroxyacetophenonethiosemicarbazone (H2L1), the 2-hydroxyacetophenone Schiff base of S-methyldithiocarbazate (H2L2), the 2-hydroxy-5-nitrobenzaldehyde Schiff base of S-methyldithiocarbazate (H2L3), and the 2-hydroxy-5-nitrobenzaldehyde Schiff base of S-benzyldithiocarbazate (H2L4), and their complexes of general formula [Ni(HL1)2], [ML] (M?=?NiII or CuII; L?=?L1, L2, L3 and L4), [Co(HL)(L); L?=?L1, L2, L3 and L4] and [ML(B)] (M?=?NiII or CuII; L?=?L2 and L4; B?=?py, PPh3) have been prepared and characterized by physico-chemical techniques. Spectroscopic evidence indicates that the Schiff bases behave as ONS tridentate chelating agents. X-ray crystallographic structure determination of [NiL2(PPh3)] and [CuL4(py)] indicates that these complexes have an approximately square-planar structure with the Schiff bases acting as dinegatively charged ONS tridentate ligands coordinating via the phenoxide oxygen, azomethine nitrogen and thiolate sulfur atoms. The electrochemical properties of the complexes have been studied by cyclic voltammetry.  相似文献   

12.
Synthesis of four different types of ligands Ar[COC(NOH)R] n (Ar = biphenyl, n = 1, HL1; Ar = biphenyl, n = 2, H2L2; Ar = diphenylmethane, n = 1, HL3; Ar = diphenylmethane, n = 2, H2L4; R = furfurylamine in all ligands) and their dinuclear Co2+, Ni2+, Cu2+, and Zn2+ complexes is reported herein. These compounds were characterized by elemental analysis, ICP-OES, FT-IR spectra, and magnetic susceptibility measurements. The ligands were further characterized by 1H NMR. The results suggest that dinuclear complexes of HL1 and HL3 have a metal to ligand mole ratio of 2: 2 and dinuclear complexes H2L2 and H2L4 have a metal to ligand mole ratio of 2: 1. Square pyramidal or octahedral structures are proposed for complexes of oxime ligands. Furthermore, extraction abilities of the four ligands were also evaluated in chloroform using selected transition metal picrates such as Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+, Pb2+. The ligands show strong binding ability towards Hg2+ and Cu2+ ions.  相似文献   

13.
Two polydentade Schiff base ligands and their Ru(III), Cr(III) and Fe(III) complexes were synthesized and characterized by elemental analysis (C, H, N), UV/Vis, FT IR, 1H and 13C NMR, LC–MS/MS, molar conductivity and magnetic susceptibility techniques. The absorption bands in the electronic spectra and magnetic moment measurements verified an octahedral environment around the metal ions in the complexes. The thermal stabilities were investigated using TGA. The synthesized complexes were used in the catalytic oxidation of 2-methyl naphthalene (2MN) to 2-methyl-1,4-naphthoquinone; vitamin K3, menadione, 2MNQ; using hydrogen peroxide, acetic acid and sulfuric acid. L1-Fe(III) complex showed very efficient catalytic activity with 58.54% selectivity in the conversions of 79.11%.  相似文献   

14.
Chiral and racemic Salen-type Schiff-base ligands (H2L1, H2L2 and H2L3), condensed between D-(+)- and D,L-camphoric diamine (also known as (1R,3S)-1,2,2-trimethylcyclopentane-1,3-diamine) and 2-hydroxybenzaldehyde or 3,5-dibromo-2-hydroxybenzaldehyde with a 1:2 molar ratio, have been synthesized and characterized. A series of new nickel(II), palladium(II) and copper(II) complexes of these chiral and racemic ligands exhibiting different coordination number (4, 5 and 6) have been characterized with the formulae [NiL1]·CH3OH (3), [NiL1]·H2O (4), [NiL2] (5), [PdL2] (6), [Cu2(L2)2(H2O)] (7) and [NiL3(DMF)(H2O)] (8). Different solvent molecules in 3 and 4 (methanol and water molecules) as well as different apical ligands in 7 and 8 (water and DMF molecules) are involved in different O–H···O hydrogen bonding interactions to further stabilize the structures. UV–Vis (UV–Vis), circular dichroism (CD) spectra and thermogravimetric (TG) analyses for the metal complexes have also been carried out.  相似文献   

15.
In this work, a glassy carbon electrode (GCE) modified with poly (diphenylamine)/multi-walled carbon nanotubes-β-cyclodextrin (PDPA/MWCNT-β-CD) film was constructed and used for the determination of 4-nitrophenol (4-NP). Diphenylamine was successfully electropolymerised onto MWCNT-β-CD-modified GCE by cyclic voltammetry in monomer solution and 5 mol L?1 H2SO4. The surface morphology of PDPA/MWCNT-β-CD film was characterised using scanning electron microscopy and electrochemical impedance spectroscopy. After adsorption of 4-NP on PDPA/MWCNT-β-CD at 0.2 V for 150 s, it showed a well-defined reduction peak in phosphate buffer solution at pH = 7. The PDPA/MWCNT-β-CD film enhanced the reduction peak current due to the complex formation between β-CD and 4-NP, presence of conductive polymer film as electron transfer mediator and also ability of MWCNTs for strong adsorptive and catalytic effect. Peak current increased linearly with 4-NP concentration in the range of 0.1 to 13.9 µg L?1. The detection limit was obtained as 0.02 µg L?1, which is better than other reported detection limits for the determination of 4-NP. The results showed that modified electrode has good sensitivity and selectivity. This sensor was used for the determination of 4-NP in water samples.  相似文献   

16.

2-[(pyridin-2-ylmethylidene)amino]-6-aminopyridine (L1), 2-[(2-furylmethylene)]phenylenediamine (L2) and their Mn(II) and Pd(II) complexes have been synthesized as potential photoactive materials, and their structures were elucidated using a variety of physicochemical techniques. The molar conductance data reveal that all complexes are nonionic in nature. Theoretical calculations were computed using the density functional theory, where the B3LYP functional was employed. The experimental results and the calculated parameters revealed a square planar and octahedral geometry around Pd(II) and Mn(II), respectively, in which the ligands coordinate to the metal ions as a bidentate manner. The thermal decomposition of the complexes has been studied. The catalytic activity of the complexes toward hydrogen peroxide decomposition reaction was investigated at 35 and 55 °C. In addition, the synthesized ligands, in comparison with their metal complexes, were screened for their antibacterial activity.

  相似文献   

17.
The picolyl hydrazone ligands derived from picolonic acid hydrazide and α-pyridyle ketone (L1, L2 and L3), α-acetyl thiophene (L4), α-formyl or α-acetyl phenol (L5 and L6 respectively) and 2-hydroxy-1-naphthaldehyde (L7) react with equimolecular amount of vanadyl sulfate in refluxing methanol to yield oxidovanadium (IV) complexes. The structure of the obtained ligands and their oxidovanadium (IV) complexes were characterized by various physicochemical techniques, viz. elemental analysis, molar conductance, magnetic susceptibility measurements, thermal analysis (TGA & DTG), IR, electronic absorption and ESR spectral studies. Cyclic voltammeteric behavior of the complexes has also been discussed. Five-coordinate square-pyramidal structure was proposed for all complexes. A monomeric nature was reported for complexes (2), (3), (6), and (7), while dimeric structures were suggested for complexes (1), (4) and (5). The ability of the complexes to catalyze the aerobic oxidation of catechol to the light absorbing o-quinone has been investigated. The results obtained show that all complexes catalyze this oxidation reaction and large variations in the rate were observed. Electrochemical data for most complexes show that there is a linear relationship between their ability to oxidize catechole and their E1/2 potentials. The most effective catalysts were those complexes which exhibited E1/2 values approached to the value of the natural tyrosinase enzyme isolated from mushroom, while those that largely deviated from that potential exhibited lower oxidase catalytic activity. The probable mechanistic implications of the catalytic oxidation reactions are discussed.  相似文献   

18.
Nickel(II) complexes with 2,3-dihydroxybenzaldehyde N4-substituted thiosemicarbazone ligands (H3L1–H3L4) have been synthesized and characterized with the aim of evaluating the effect of N4 substitution in the thiosemicarbazone moiety on their coordination behavior and biological activities. Two series of nickel(II) complexes with the general formulae [Ni(H3L)(H2L)]ClO4 and [Ni2(HL)2] were characterized by analytical and spectral techniques. The molecular structure of one of the complexes, namely, [Ni(H3L4)(H2L4)]ClO4 was established by single crystal X-ray diffraction studies. The crystal structure of this complex revealed that two H3L4 ligands are coordinated to nickel(II) in different modes; one as a neutral tridentate ONS ligand and the other is as a monoanionic tridentate (ONS?) ligand. The antimicrobial activities of the compounds were tested against 25 bacterial strains via the disc diffusion method, and their minimum inhibitory concentration (MIC) and minimum microbicidal concentration were evaluated using microdilution methods. With a few exceptions, most of the compounds exhibited low-to-moderate inhibitory activities against the tested bacterial strains. However, the complexes [Ni2(HL3)2] (7) and [Ni2(HL4)2] (8) indicated higher inhibitory activity against Salmonella enterica ATCC 9068 (MIC values 15.7 and <15.7 μg/ml, respectively), compared with gentamicin as the positive control (MIC 25 μg/ml). Complex (7) also inhibited Streptococcus pneumoniae more efficiently (MIC 31.2 μg/ml), compared with gentamicin (MIC > 50 μg/ml). The toxicities of the compounds were tested on brine shrimp (Artemia salina), where no meaningful toxicity level was noted for both the free ligands and the complexes. The cytotoxicities of the compounds on cell viability were determined on MCF7, PC3, A375, and H413 cancer cells in terms of IC50; complexes [Ni(H3L3)(H2L3)]ClO4 (3), [Ni2(HL3)2] (7) and [Ni2(HL4)2] (8) exhibited significant cytotoxicity on the tested cell lines.  相似文献   

19.
A novel series of N2O2 diazadioxa macrocyclic complexes [MLCl2] (M=Co2+, Ni2+ and Cu2+) have been synthesized with newly derived biologically active ligands (LI-LIV). These ligands were synthesized by the condensation of 1, 6-bis(2-formylphenyl)hexane and 3-subtituted-4-amino-5-hydrazino-1, 2, 4-triazole. The mode of bonding and overall geometry of the complexes have been inferred through IR, EPR, electronic spectral studies, conductivity, magnetic, thermal and electrochemical studies. All the complexes are soluble in DMF and DMSO and are non-electrolytes. All these complexes have been screened for their antibacterial (Escherichia coli, Staphylococus aureus, Salmonella typhi, Pseudomonas aeruginosa) and antifungal activities (Aspergillus niger, Aspergillus flavus and Cladosporium) by the MIC method. The DNA cleavage study was done by Agarose gel electrophoresis.  相似文献   

20.
Two new tetranuclear NiII complexes, [Ni4(L1)2(N3)4(MeOH)2]·CH3COCH3 (1) and [Ni4(L2)2(N3)4(MeOH)2]·4CH3COCH3 (2) , were synthesized using NiCl2·6H2O, NaN3, and asymmetric salamo‐based ligands H2L1 and H2L2, respectively. The structural characterization was made by elemental analyses, infrared (IR) and ultraviolet‐visible (UV‐vis) spectra, and X‐ray diffraction analyses. The results of X‐ray diffraction analyses show that the NiII atoms in complexes 1 and 2 are distorted octahedral geometries. Interestingly, the degree of distortion of the ligands in complexes 1 and 2 is different, which indicates that the interaction of NiII ions on different ligands is different. Meanwhile, the investigation of molecular packing by employing the Hirshfeld surface analysis exhibits that the percentages of C–H/H–C, O–H/H–O, and H–H/H–H contacts of the complex 1 (or 2 ) are calculated to be 17.7%, 7.9%, and 53.7% (or 18.8%, 13.8%, and 52.5%), respectively, where the H–H/H–H contacts have the characteristics of strong contacts whereas the O–H/H–O hydrogen bonds are considerably weak, and the studies on fluorescence properties further confirm the NiII atoms have different binding abilities to the different ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号