首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Deep-red to near-infrared (NIR) OLEDs, which yield emission peak wavelengths beyond λ=660 nm, are applicable as unique light sources in plant growth or health monitoring systems. Compared with other visible-spectrum OLEDs, however, research in the field of deep-red OLEDs is not as advanced. In this work, three new types of dibenzofuran-based host materials are developed as n-type exciplex host partners. Combining these with the deep-red iridium complex bis(2,3-diphenylquinoxaline)iridium(dipivaloylmethane) ([(DPQ)2Ir(dpm)]) and N,N′-di(naphalene-1-yl)-N,N′-diphenylbenzidine (α-NPD) as a p-type exciplex host partner, a highly efficient deep-red OLED can be realized with a maximum external quantum efficiency (ηext,max) of over 16 % with Comission Internationale de l′Éclairge (CIE) coordinates of (0.71, 0.28). In addition, the effect of the doping concentration and the p/n ratio of the exciplex host on the efficiency and the lifetime of the OLEDs are investigated. Consequently, the optimized device exhibits a ηext,max of over 15 % and a six-time longer lifetime operating at high brightness of 100 cd m−2 compared with other state-of-the-art deep-red OLEDs.  相似文献   

2.
Clusters combine the advantages of organic molecules and inorganic nanomaterials, which are promising alternatives for optoelectronic applications. Nonetheless, recently emerged cluster light-emitting diodes require further excited state optimization of cluster emitters, especially to reduce population of the cluster-centered triplet quenching state (3CC). Here we report that redox-active ligands enhance reverse intersystem crossing (RISC) of Cu4I4 cluster for triplet-to-singlet conversion, and thermally activated delayed fluorescence (TADF) host can provide an external RISC channel. It indicates that the complementarity between TADF host and cluster in RISC transitions gives rise to 100 % triplet conversion efficiency and complete singlet exciton convergence, rendering 100-fold increased singlet radiation rate constant and tenfold decreased triplet non-radiation rate constant. We achieve a photoluminescence quantum yield of 99 % and a record external quantum efficiency of 29.4 %.  相似文献   

3.
《中国化学快报》2023,34(2):107556
The development of deep-red emitting lead-free metal-halide perovskites with high photoluminescence quantum yields (PLQYs) and outstanding stability remains a major challenge for displays and deep-tissue bioimaging. In this work, we report a facile and convenient solvothermal method to synthesize metal halides Cs2ZnX4 (X = Cl, Br) that however is PL innert at room temperature. Upon composition engineering utilizing Sn2+ as the dopant, the resulting Cs2ZnCl4:Sn not only emits strong deep-red PL peaked at 700 nm with the highest 99.4% PLQY among the similar materials so far, but also exhibits excellent structure stability in air (PLQY remains 96% after one year exposure to the atmosphere). Detailed experimental characterizations and theoretical calculations reveal that the deep-red emission stems from self-trapped excitons induced by the Sn2+ dopant. Particularly, triplet emission (3P21S0) from Sn-5s2 orbitals has been observed at low temperature due to the break of parity-forbidden transition. This work provides an important guidance for the development of deep-red light-emitting materials with low price, high efficiency and excellent stability.  相似文献   

4.
Suppressing aggregation-caused quenching (ACQ) effect and reducing device efficiency roll-off are both crucial yet challenging for multi-resonance (MR) emitters. Herein, we put forward a medium-ring strategy to design efficient MR emitters that feature heptagonal tribenzo[b,d,f]azepine (TBA) donors. The highly twisted conformation enlarges the intermolecular distances between the MR-emitting cores, and thus suppresses ACQ effect. Meanwhile, the introduction of heptagonal donors enhances spin-orbital coupling, so as to accelerate reverse intersystem crossing (RISC) process. This medium-ring strategy gives rise to the first example of blue MR emitter that simultaneously possesses radiative decay rate as fast as 108 s−1 and RISC rate as fast as 106 s−1. Accordingly, DTBA-B2N3 enables to assemble high-performance blue organic light-emitting diodes (OLEDs) with maximum external quantum efficiency (EQEmax) of 30.9 % and alleviated efficiency roll-off (EQE1000: 20.5 %).  相似文献   

5.
Indoor artificial cultivation of plants is a novel technology applied to agriculture, and the emission band of luminescent materials can be matched with the needs of plants to promote plant growth. In this contribution, novel Mn4+ doped Sr2GdTaO6 (SGTO) deep-red phosphor was synthesized. This material was characterized, in detail, by X-ray diffractometer, SEM, and photoluminescence emission spectra. Sr2GdTaO6:Mn4+ (SGTO:Mn4+) can be effectively excited by near-ultraviolet (NUV) light, and the broadband emission of deep-red light matches the absorption band of plant phytochromes PR and PFR. The optimum doping concentration of Mn4+ in SGTO was 0.6 mol%, and the concentration quenching mechanism was attributed to dipole-quadrupole (d-q) electric interaction. The photoluminescence emission intensity of SGTO:0.006Mn4+ at 423 K is 80.6% of that at room temperature and the internal quantum efficiency of SGTO:0.006Mn4+ is 36.09%. Finally, the performance of the commercial 440 nm light-emitting diode chip/SGTO:0.006Mn4+ encapsulated light-emitting diode device was stable and can meet the needs of plants for the blue and red light. The results showed that SGTO:0.006Mn4+ deep-red phosphor is expected to be a phosphor suitable for indoor plant growth lighting.  相似文献   

6.
Further development of high-efficiency and low-cost organic fluorescent materials is intrinsically hampered by the energy gap law and spin statistics, especially in the near-infrared (NIR) region. Here we design a novel building block with aggregation-induced emission (AIE) activity for realizing highly efficient luminophores covering the deep-red and NIR region, which originates from an increase in the orbital overlap and electron-withdrawing ability. An organic donor–acceptor molecule (BPMT) with the building block is prepared and can readily form J-type molecular columns with multiple C–H⋯N/O interactions. Notably, such synthesized materials can emit fluorescence centered at 701 nm with extremely high photoluminescence quantum yields (PLQYs) of 48.7%. Experimental and theoretical investigations reveal that the formation of the hybridized local and charge-transfer (HLCT) state and substantial C–H⋯N/O interactions contribute to a fast radiative decay rate and a slow nonradiative decay rate, respectively, resulting in high PLQYs in the solid state covering the NIR range. Remarkably, such BPMT crystals, as a first example, reveal strong-penetrability piezochromism along with a distinct PL change from the deep-red (λmax = 704 nm) to NIR (λmax = 821 nm) region. Moreover, such typical AIE-active luminophores are demonstrated to be a good candidate as a lasing medium. Together with epoxy resin by a self-assembly method, a microlaser is successfully illustrated with a lasing wavelength of 735.2 nm at a threshold of 22.3 kW cm−2. These results provide a promising approach to extend the contents of deep-red/NIR luminophores and open a new avenue to enable applications ranging from chemical sensing to lasing.

A HLCT-type luminophore is prepared with bright deep-red fluorescence, showing high-performance piezochromism and lasing.  相似文献   

7.
《中国化学快报》2019,30(11):1947-1950
Organic solid-state luminescent materials with high-efficiency deep-red emission have attracted considerable interest in recent years.Constructing donor-acceptor(D-A) type molecules has been one of most commonly used strategies to achieve deep-red emission,but it is always difficult to achieve high photoluminescence(PL) quantum yield(η_(PL)) due to forbidden charge-transfer state.Herein,we report a new D-A type molecule 4-(7-(4-(diphenylamino)phenyl)-9-oxo-9 H-fluoren-2-yl)benzonitrile(TPAFOCN),deriving from donor-acceptor-donor(D-A-D) type 2,7-bis(4-(diphenylamino)phenyl)-9 Hfluoren-9-one(DTPA-FO) with a fluorescence maximum of 627 nm in solids.This molecular design enables a transformation of acceptor from fluorenone(FO) itself to 4-(9-oxo-9 H-fluoren-2-yl)benzonitrile(FOCN).Compared with DTPA-FO,the introduction of cyanophenyl not only shifts the emission of TPA-FOCN to deep red with a fluorescence maximum of 668 nm in solids,but also maintains the high η_(PL) of 10%.Additionally,a solution-processed non-doped organic light-emitting diode(OLED)was fabricated with TPA-FOCN as emitter.TPA-FOCN device showed a maximum luminous efficiency of0.13 cd/A and a maximum external quantum efficiency(EQE) of 0.22% with CIE coordinates of(0.64,0.35).This work provides a valuable strategy for the rational design of high-efficiency deep-red emission materials using cyanophenyl as an ancillary acceptor.  相似文献   

8.
Nitridophosphates exhibit an intriguing structural diversity with different structural motifs, for example, chains, layers or frameworks. In this contribution the novel nitridophosphate Sr3P3N7 with unprecedented dreier double chains is presented. Crystalline powders were synthesized using the ammonothermal method, while single crystals were obtained by a high-pressure multianvil technique. The crystal structure of Sr3P3N7 was solved and refined from single-crystal X-ray diffraction and confirmed by powder X-ray methods. Sr3P3N7 crystallizes in monoclinic space group P2/c. Energy-dispersive X-ray and Fourier-transformed infrared spectroscopy were conducted to confirm the chemical composition, as well as the absence of NHx functionality. The optical band gap was estimated to be 4.4 eV using diffuse reflectance UV/Vis spectroscopy. Upon doping with Eu2+, Sr3P3N7 shows a broad deep-red to infrared emission (λem=681 nm, fwhm≈3402 cm−1) with an internal quantum efficiency of 42 %.  相似文献   

9.
Quantum yields of photophosphorylation in Halobacterium halobium were determined for ultraviolet spectral bands between 276 and 365 nm, and at 565 nm wavelength, based on integral spectral cell absorptance, bacteriorhodopsin-specific cell absorptance and the corresponding quantum dose rates. In the ultraviolet, there is an almost linear decline of the quantum yields of photophosphorylation from 365 to 276 nm wavelength, despite the peak absorption of bacteriorhodopsin at 280 nm. The cycling quantum yield for 276 nm excitation of bacteriorhodopsin was determined as 4.5 ± 1.8%, which is about one fourth of the value of 19% for solubilized bacteriorhodopsin. Threshold energy fluence rates of 20 W m?2 for UV-B radiation typify the photophosphorylation as three orders less sensitive than the sensory UV-B avoidance response that needs 0.02 W m?2 as the threshold. Thus, UV-B avoidance appears as the dominating strategy for survival of the archaic bacterium H. halobium, rather than possible photoenergetic use of UV-B radiation and photorepair of UV-damage.  相似文献   

10.
Heavy-atom integration into thermally activated delayed fluorescence (TADF) molecule could significantly promote the reverse intersystem crossing (RISC) process. However, simultaneously achieving high efficiency, small roll-off, narrowband emission and good operational lifetime remains a big challenge for the corresponding organic light-emitting diodes (OLEDs). Herein, we report a pure green multi-resonance TADF molecule BN-STO by introducing a peripheral heavy atom selenium onto the parent BN-Cz molecule. The organic light-emitting diode device based on BN-STO exhibited state-of-the-art performance with a maximum external quantum efficiency (EQE) of 40.1 %, power efficiency (PE) of 176.9 lm W−1, well-suppressed efficiency roll-off and pure green gamut. This work reveals a feasible strategy to reach a balance between fast RISC process and narrow full width at half maximum (FWHM) of MR-TADF by heavy atom effect.  相似文献   

11.
In this article, based on the former accurate and precise ab initio calculation results for potassium nitride (KN) and calcium nitride (CaN), I revisit the possibilities and potentials of KN and CaN as the best candidate for molecular multiple quantum bit (MMQB) for the diatomic molecular quantum computer (DMQC), and would like to propose the two molecules as CPUs of the DMQC. Lowest lying four electronic states of CaN are energetically located within 1800 cm?1. These four states form the good molecular electronic two quantum bits through the dipole and weak spin–orbit interactions. 3Π state of KN is calculated to lie above ground 3Σ? state by 177 cm?1. KN is a promising candidate for an electronic one quantum bit. When vibrational progression is considered to be accompanied by the electronic transition, CaN and KN are good candidates for larger MMQBs up to a thousand even in the single molecule because the concrete quantum state bearing the quantum bit is each molecular ro‐vibronic state, that is, the specific rotational state on each vibronic level. When CaN and KN work in assemblies as quantum bit, those assemblies become larger MMQBs, the number of which might reach the Avogadro number because the molecular spectra appearing in the molecular spectroscopy are the results from the observation by the photon‐exchange among intramolecular quantum states made up of 1015 to the Avogadro (6.02 × 1023 mol?1) number of molecules interacting with radiation. Even without the vibrational progression, in the case of the lowest two quantum bit of KN, which is a stable vibronic two quantum bit, a thousand of KN molecules provide a thousand of MMQBs. That is the same situation as that for CaN. Using KN and CaN as MMQBs (playing the triple roles of CPU, RAMs (memory), and storages) ultra‐fast “in core” quantum computation can be done. An application of the full‐CI quantum chemistry calculation results for the demonstration of the DMQC is discussed. I strongly hope that the MMQB will “oscillate” and that the DMQC will be realized in the near future for the welfare of human being and the further development of modern material civilization. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
In this study, the electronic structures and optical properties of a cyclometalated Pt(II) complex (M1) and a series of derivatives (M1–F, M1–CF3, and M1–CN) with electron-withdrawing substituents (–F, –CF3, and –CN) at the carbazole moiety were theoretically investigated by density functional theory and time-dependent density functional theory. The calculation results reveal that these Pt complexes display deep red phosphorescence emission above Λ = 640 nm. When the 3MLCT/π → π* to triplet metal-centered 3MC/d–d state decay mechanism is taken into consideration, the nonradiative decay rate constant (knr) decreased in the order M1 > M1–CF3 > M1–F > M1–CN. The <T1|HSOC|Sm> and kr values of M1-F are similar with those of M1, however the Knr rate ofM1-F is larger than that of M1. M1–F is expected to have improved quantum yields. Moreover, through the analyses of the HOMO/LUMO level and triplet energy, it is found that the introduction of –F and –CN substituents in M1 results in efficient energy transfer from the host material 4,4′-N,N′-dicarbazole-biphenyl to these complexes. In view of the electroluminescent applications in organic light-emitting diodes, M1–F can serve as efficient deep-red guest materials with improved electron injection and transport ability.  相似文献   

13.
The dynamics of formation of oxygen atoms after UV photoexcitation of SO2 in the gas-phase was studied by pulsed laser photolysis-laser-inducedfluorescence ‘pump-and-probe’ technique in a flow reactor. SO2 at room-temperature was excited at the KrCl excimer laser wavelength (222.4 nm) and O(3Pj) photofragments were detected under collision-free conditions by vacuum ultraviolet laser-induced fluorescence. The use of narrow-band probe laser radiation, generated viaresonant third-order sum-difference frequency conversion of dye laser radiation in Krypton, allowed the measurement of the nascent O(3Pj=2,1,0) fine-structure state distribution:n j=2/nj=1/nj=0 = (0.88 ± 0.02)/(0.10 ± 0.01)/(0.02 ± 0.01). Employing NO2photolysis as a reference, a value of Φ0(3P) = 0.13 ± 0.05 for the absolute O(3P) atom quantum yield was determined. The measured O(3P) quantum yield is compared with the results of earlier fluorescence quantum yield measurements. A suitable mechanism is suggested in which the dissociation proceeds via internal conversion from high rotational states of the initially excited SO2(~C1B2 (1, 2, 2) vibronic level to nearby continuum states of the electronic ground state.  相似文献   

14.
Abstract— Biologically active f2-RNA, Obtained from bacteriophage f2, was inactivated by ultraviolet (u.v) light (2537 Å) with a quantum yield of 3.3 ± 0.3 times 10-3 when assayed in the dark with protoplasts of an F- strain of E. coli k12. Assay under “black light” gave a quantum yield of 2.7 ± 0.5 times 10-3 which was just enough lower to suggest that 17 per cent photorecovery of the u.v. lesions has taken place. Intact phage f2 was inactivated by u.v. radiation with a quantum yield of 0.7 ± 0.12 times 10-3, Thus the whole phage is much less sensitive than the free RNA. No evidence of photorecovery was found in u.v.-irradiated RNA phage 7S assayed in its host Pseudomonas aeruginosa.  相似文献   

15.
A novel bipolar host tris(4-(pyrimidin-5-yl)phenyl)amine (TPMTPA) constructed by incorporating triphenylamine as the electron-donating core and pyrimidine as the electron-accepting peripheries was designed and synthesized. TPMTPA achieves excellent bipolar charge transport properties and has high enough triplet energy level to sensitize green, yellow, orange, red and deep-red phosphors. By using TPMTPA as a host, high performance green, yellow, orange, red and deep-red phosphorescent organic light-emitting devices (PhOLEDs) were demonstrated with maximum external quantum efficiencies of 20.4%, 17.6%, 15.1%, 15.3% and 15.7% respectively. These results suggested that TPMTPA is a versatile high performance host for PhOLEDs of different emission colors.  相似文献   

16.
Highly efficient inorganic phosphors are crucial for solid-state lighting. In this paper, a new method of low-temperature self-reduction was used for preparing a highly efficient deep blue-emitting phosphor of Ca[B8O11(OH)4] : Eu2+ (CBH : Eu2+). The crystal structure, morphology, chemical state, and photoluminescence (PL) properties of the CBH : Eu2+ phosphor have been investigated. By using the screened hybrid function (HSE06), the band gap (Eg) of CBH was calculated to be 7.48 eV, which is a necessary condition for achieving high quantum yield phosphors. The experiment results show that almost all the added raw materials of Eu3+ can be reduced to Eu2+ in CBH crystal under a non-reducing atmosphere. The CBH : Eu2+ phosphor shows a broad excitation spectrum centered at 277 and 327 nm in the range of 220 to 400 nm, and a narrow-band emission spectrum centered at 428 nm in the range of 400 to 500 nm, with a full width at half maximum (fwhm) of 42.35 nm. Under UV radiation, the CBH : 2 %Eu2+ exhibits high photoluminescence quantum yield (PLQY=95.0 %), high external quantum efficiency (EQE=31.1 %), and ultra-high color purity (97.6 %). The PL intensity of CBH : 2 %Eu2+ remains 62.6 % of the initial intensity at 150 °C. Finally, the white light-emitting diodes (WLED) fabricated by CBH : 2 %Eu2+, excited by a 365 nm chip, presents outstanding performances with a luminous efficacy (LE) of 13.9 lm/W, a color rendering index (CRI) of 89.4, and a correlated color temperature (CCT) of 5825 K. The above results show that CBH : Eu2+ can be used as a promising blue phosphor for WLED. This new method of low-temperature self-reduction can be applied to design and prepare other new types of highly efficient phosphors.  相似文献   

17.
18.
Cyanophenyl as ancillary acceptor to modify donor-acceptor compound,plays an effective role in shifting the emission color to deep red and maintaining the luminescent efficiency.  相似文献   

19.
一种在近红外光谱(NIR)区域高效的量子剪裁现象已在Ca0.8-2x(YbxTb0.1Na0.1+x)2xWO4(x=0~0.2)荧光粉中得到证实,该量子剪裁通过吸收紫外线光子发射近红外光子,能量传递包括两个协同过程,分别是WO42-基团到Yb3+离子和WO42-基团到Tb3+离子再到Yb3+离子,Yb3+离子的掺杂浓度对荧光粉在可见光和近红外光谱的发光,荧光寿命和量子效率的影响已进行了详细得研究。经计算,量子效率最大达到135.7%。铽与镱共掺钨酸钙的近红外量子剪裁,通过吸收太阳光谱的1个紫外光到2个1000nm光子(2倍光子数增加)的下转化机制实现高效率硅太阳能电池的途径。  相似文献   

20.
A double‐zero quantum (DZQ)‐refocused INADEQUATE experiment is introduced for J‐based NMR correlations under ultra‐fast (60 kHz) magic angle spinning (MAS). The experiment records two spectra in the same dataset, a double quantum–single quantum (DQ‐SQ) and zero quantum–single quantum (ZQ‐SQ) spectrum, whereby the corresponding signals appear at different chemical shifts in ω1. Furthermore, the spin‐state selective excitation (S3E) J‐decoupling block is incorporated in place of the second refocusing echo of the INADEQUATE scheme, providing an additional gain in sensitivity and resolution. The two sub‐spectra acquired in this way can be treated separately by a shearing transformation, producing two diagonal‐free single quantum (SQ‐SQ)‐type spectra, which are subsequently recombined to give an additional sensitivity enhancement, thus offering an improvement greater than a factor of two as compared to the original refocused INADEQUATE experiment. The combined DZQ scheme retains transverse magnetization on the initially polarized (I) spin, which typically exhibits a longer transverse dephasing time (T2′) than its through‐bond neighbour (S). By doing so, less magnetization is lost during the refocusing periods in the sequence to give even further gains in sensitivity for the J correlations. The experiment is demonstrated for the correlation between the carbonyl (CO) and alpha (CA) carbons in a microcrystalline sample of fully protonated, [15N,13C]‐labelled CuII, ZnII superoxide dismutase, and its efficiency is discussed with respect to other J‐based schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号