首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activatable theranostic systems show potential for improved tumor diagnosis and therapy owing to high detection specificities, effective ablation, and minimal side‐effects. Herein, a tumor microenvironment (TME)‐activated NIR‐II nanotheranostic system (FEAD1) for precise diagnosis and treatment of peritoneal metastases is presented. FEAD1 was fabricated by self‐assembling the peptide Fmoc‐His, mercaptopropionic‐functionalized Ag2S quantum dots (MPA‐Ag2S QDs), the chemodrug doxorubicin (DOX), and NIR absorber A1094 into nanoparticles. We show that in healthy tissue, FEAD1 exists in an NIR‐II fluorescence “off” state, because of Ag2S QDs‐A1094 interactions, while DOX remains in stealth mode. Upon delivery of FEAD1 to the tumor, the acidic TME triggers its disassembly through breakage of the Fmoc‐His metal coordination and DOX hydrophobic interactions. Release of A1094 switches on Ag2S fluorescence, illuminating the tumor, accompanied by burst release of DOX within the tumor tissue, thereby achieving precise tumor theranostics. This TME‐activated theranostic strategy holds great promise for future clinical applications.  相似文献   

2.
Traumatic brain injury (TBI) is one of the most dangerous acute diseases resulting in high morbidity and mortality. Current methods remain limited with respect to early diagnosis and real-time feedback on the pathological process. Herein, a targeted activatable fluorescent nanoprobe (V&A@Ag2S) in the second near-infrared window (NIR-II) is presented for in vivo optical imaging of TBI. Initially, the fluorescence of V&A@Ag2S is turned off owing to energy transfer from Ag2S to the A1094 chromophore. Upon intravenous injection, V&A@Ag2S quickly accumulates in the inflamed vascular endothelium of TBI based on VCAM1-mediated endocytosis, after which the nanoprobe achieves rapid recovery of the NIR-II fluorescence of Ag2S quantum dots (QDs) owing to the bleaching of A1094 by the prodromal biomarker of TBI, peroxynitrite (ONOO). The nanoprobe offers high specificity, rapid response, and high sensitivity toward ONOO, providing a convenient approach for in vivo early real-time assessment of TBI.  相似文献   

3.
《中国化学快报》2020,31(7):1717-1728
Last two decades, with the rapid changes and development of nanotechnology and biological materials, diverse multi-functional nanomaterials emerging, which offers a novel way to treat and diagnose diseases, and therefore spawned the new biomedical technology of theranostics, which integrates the treatment and diagnosis or monitoring of diseases into one. Ag2S as a bio-nanomaterial with low biotoxicity has attracted more and more attention due to its good photoluminescence properties and fluorescence imaging of small animals in the second near-infrared region (NIR-II). Meanwhile, Ag2S has the ability to absorb near-infrared light strongly because of its local surface plasma resonance (LSPR) effect and had become a kind of photothermal converters with good photothermal conversion efficiency. More interestingly, both photothermal effect and fluorescence characteristics of Ag2S nanoparticles (NPs) are closely related to their particle sizes. However, the relationship between photothermal effect and fluorescence characteristics of Ag2S NPs and their sizes has not been reviewed so far. Herein, the synthesis methods and influencing factors of synthesize Ag2S NPs with different sizes were compared firstly, and then the photothermal effect and fluorescence characteristics of Ag2S NPs with different sizes were summarized. Finally, the possibilities and challenges of using Ag2S NPs to construct theranostic agent were discussed in the end.  相似文献   

4.
Small-molecule subcellular organelle-targeting theranostic probes are crucial for early disease diagnosis and treatment. The imaging window of these molecules is mainly focused on the visible and near-infrared region (below ∼900 nm) which limits the tissue penetration depth and therapeutic effects. Herein, a novel NIR-II small-molecule probe H4–PEG-Glu with a thiopyrylium cation was synthesized. H4–PEG-Glu not only can quickly and effectively image mitochondria in acute myeloid leukemia (AML) cells, and induce G0/G1 phase arrest by the intrinsic mitochondrial apoptosis pathway w/o irradiation, but also exhibit moderate cytotoxicity against AML cancer cells in a dose dependent-manner without laser irradiation. The THP-1 cells treated with H4–PEG-Glu upon NIR laser irradiation showed enhanced chemo- and photothermal therapy (CPTT) with 93.07% ± 6.43 apoptosis by Annexin V staining. Meanwhile, H4–PEG-Glu displayed high synergistic CPTT effects in vivo, as well as specific NIR-II tumor imaging in AML patient derived PDX mouse models for the first time. Our work lays down a solid foundation for designing small-molecule NIR-II mitochondria-selective theranostic probes.

Small-molecule subcellular organelle-targeting theranostic probes are crucial for early disease diagnosis and treatment.  相似文献   

5.
In pancreatic cancer, the special barrier system formed by a large number of stromal cells severely hinders drug penetration in deep tumor tissues, resulting in low treatment efficiency. Cell membrane protein-camouflaged liposomal nanomedicines have cancer cell targeting abilities, whereas near-infrared two-zone (NIR-II) fluorescence imaging can achieve deep tissue penetration due to its long light wavelength (1,000–1,700 nm). To combine the cell membrane-based biomimetic technology with NIR-II fluorescence imaging, we constructed a biomimetic nanomedicine (BLIPO-I/D) by camouflaging indocyanine green-doxorubicin (ICG-DOX) liposomes with SW1990 pancreatic cancer cell membrane. The nanomedicine exhibited light-controlled DOX release and high pancreatic cancer treatment efficiency in vitro and in vivo. BLIPO-I/D showed the ability of targeted delivery of a large number of liposomes to pancreatic tumor tissues through homologous targeting of SW1990 cell membranes, which increased the NIR-II fluorescence imaging intensity. Irradiation of the liposomes taken up by pancreatic tumor tissues with near-infrared light (808 nm) triggered the rapid release of DOX from the liposomes, induced the photothermal and photodynamic effects of ICG, which exerted anti-tumor effects. Therefore, the fabricated biomimetic liposomal nanomedicine BLIPO-I/D is expected to achieve precise theranostics of pancreatic cancer.  相似文献   

6.
Traumatic brain injury (TBI) is one of the most dangerous acute diseases resulting in high morbidity and mortality. Current methods remain limited with respect to early diagnosis and real‐time feedback on the pathological process. Herein, a targeted activatable fluorescent nanoprobe (V&A@Ag2S) in the second near‐infrared window (NIR‐II) is presented for in vivo optical imaging of TBI. Initially, the fluorescence of V&A@Ag2S is turned off owing to energy transfer from Ag2S to the A1094 chromophore. Upon intravenous injection, V&A@Ag2S quickly accumulates in the inflamed vascular endothelium of TBI based on VCAM1‐mediated endocytosis, after which the nanoprobe achieves rapid recovery of the NIR‐II fluorescence of Ag2S quantum dots (QDs) owing to the bleaching of A1094 by the prodromal biomarker of TBI, peroxynitrite (ONOO?). The nanoprobe offers high specificity, rapid response, and high sensitivity toward ONOO?, providing a convenient approach for in vivo early real‐time assessment of TBI.  相似文献   

7.
Fluorescence‐guided cytoreductive surgery is one of the most promising approaches for facile elimination of tumors in situ, thereby improving prognosis. Reported herein is a simple strategy to construct a novel chainlike NIR‐II nanoprobe (APP‐Ag2S‐RGD) by self‐assembly of an amphiphilic peptide (APP) into a nanochain with subsequent chemical crosslinking of NIR‐II Ag2S QDs and the tumor‐targeting RGD peptide. This probe exhibits higher capability for cancer cell detection compared with that of RGD‐functionalized Ag2S QDs (Ag2S‐RGD) at the same concentration. Upon intraperitoneal injection, superior tumor‐to‐normal tissue signal ratio is achieved and non‐vascularized tiny tumor metastatic foci as small as about 0.2 mm in diameter could be facilely eliminated under NIR‐II fluorescent imaging guidance. These results clearly indicate the potential of this probe for fluorescence‐guided tumor staging, preoperative diagnosis, and intraoperative navigation.  相似文献   

8.
Development of simple and effective synergistic therapy by combination of different therapeutic modalities within one single nanostructure is of great importance for cancer treatment. In this study, by integrating the anticancer drug DOX and plasmonic bimetal heterostructures into zeolitic imidazolate framework-8 (ZIF-8), a stimuli-responsive multifunctional nanoplatform, DOX-Pt-tipped Au@ZIF-8, has been successfully fabricated. Pt nanocrystals with catalase-like activity were selectively grown on the ends of the Au nanorods to form Pt-tipped Au NR heterostructures. Under single 1064 nm laser irradiation, compared with Au NRs and Pt-covered Au NRs, the Pt-tipped Au nanorods exhibit outstanding photothermal and photodynamic properties owing to more efficient plasmon-induced electron–hole separation. The heat generated by laser irradiation can enhance the catalytic activity of Pt and improve the O2 level to relieve tumor hypoxia. Meanwhile, the strong absorption in the NIR-II region and high-Z elements (Au, Pt) of the DOX-Pt-tipped Au@ZIF-8 provide the possibility for photothermal (PT) and computed tomography (CT) imaging. Both in vitro and in vivo experimental results illustrated that the DOX-Pt-tipped Au@ZIF-8 exhibits remarkably synergistic plasmon-enhanced chemo-phototherapy (PTT/PDT) and successfully inhibited tumor growth. Taken together, this work contributes to designing a rational theranostic nanoplatform for PT/CT imaging-guided synergistic chemo-phototherapy under single laser activation.

A plasmon-enhanced theranostic nanoplatform for synergistic chemo-phototherapy (PTT/PDT) of hypoxic tumors in the NIR-II window.  相似文献   

9.
Ag2Se quantum dots (QDs) with near‐infrared (NIR) fluorescence have been widely utilized in NIR fluorescence imaging in vivo because of their narrow bulk band gap and excellent biocompatibility. However, most of synthesis methods for Ag2Se QDs are expensive and the reactants are toxic. Herein, a new protein‐templated biomimetic synthesis approach is proposed for the preparation of Ag2Se QDs by employing bovine serum albumin (BSA) as a template and dispersant. The BSA‐templated Ag2Se QDs (Ag2Se@BSA QDs) showed NIR fluorescence with high fluorescence quantum yield (≈21.2 %), excellent biocompatibility and good dispersibility in different media. Moreover, the obtained Ag2Se@BSA QDs exhibited remarkable photothermal conversion (≈27.8 %), which could be used in photothermal therapy. As a model application in biomedicine, the Ag2Se@BSA QDs were used as “gatekeepers” to cap mesoporous silica nanoparticles (MSNs) by means of electrostatic interaction. By taking the advantages of NIR fluorescence and photothermal property of Ag2Se@BSA QDs, the obtained MSN‐DOX‐Ag2Se nanoparticles (MDA NPs) were employed as a nanoplatform for combined chemo‐photothermal therapy. Compared with free DOX and MDA NPs without NIR laser, the laser‐treated MDA NPs exhibited lower cell viability in vitro, implying that Ag2Se@BSA QDs are highly promising photothermal agents and the MDA NPs are potential carriers for chemo–photothermal therapy.  相似文献   

10.
《中国化学快报》2022,33(7):3478-3483
Phototheranostics have attracted tremendous attention in cancer diagnosis and treatment because of the noninvasiveness and promising effectiveness. Developing advanced phototheranostic agents with long emission wavelength, excellent biocompatibility, great tumor-targeting capability, and efficient therapeutic effect is highly desirable. However, the mutual constraint between imaging and therapeutic functions usually hinders their wide applications in biomedical field. To balance this contradiction, we herein rationally designed and synthesized three novel tumor-targeted NIR-II probes (QR-2PEG321, QR-2PEG1000, and QR-2PEG5000) by conjugating three different chain lengths of PEG onto an integrin αvβ3-targeted NIR-II heptamethine cyanine fluorophore, respectively. In virtue of the essential amphiphilic characteristics of PEG polymers, these probes display various degree of aggregation in aqueous buffer accompanying with differential NIR-II imaging and photothermal (PTT) therapeutic performance. Both in vitro and in vivo results have demonstrated that probe QR-2PEG5000 has the best NIR-II imaging performance with prominent renal clearance, whereas QR-2PEG321 possesses excellent photoacoustic signal as well as PTT effect, which undoubtedly provides a promising toolbox for tumor diagnosis and therapy. We thus envision that these synthesized probes have great potential to be explored as a toolkit for precise diagnosis and treatment of malignant tumors.  相似文献   

11.
Developing molecular fluorophores with enhanced fluorescence in aggregate state for the second near-infrared (NIR-II) imaging is highly desirable but remains a tremendous challenge due to the lack of reliable design guidelines. Herein, we report an aromatic substituent strategy to construct highly bright NIR-II J-aggregates. Introduction of electron-withdrawing substituents at 3,5-aryl and meso positions of classic boron dipyrromethene (BODIPY) skeleton can promote slip-stacked J-type arrangement and further boost NIR-II fluorescence of J-aggregates via increased electrostatic repulsion and intermolecular hydrogen bond interaction. Notably, NOBDP-NO2 with three nitro groups (−NO2) shows intense NIR-II fluorescence at 1065 nm and high absolute quantum yield of 3.21 % in solid state, which can be successfully applied in bioimaging, high-level encoding encryption, and information storage. Moreover, guided by this electron-withdrawing substituent strategy, other skeletons (thieno-fused BODIPY, aza-BODIPY, and heptamethine cyanine) modified with −NO2 are converted into J-type aggregates with enhanced NIR-II fluorescence, showing great potential to convert aggregation caused emission quenching (ACQ) dyes into brilliant J-aggregates. This study provides a universal method for construction of strong NIR-II emissive J-aggregates by rationally manipulating molecular packing and establishing relationships among molecular structures, intermolecular interactions, and fluorescence properties.  相似文献   

12.
Pathogenic microorganisms in the environment are a great threat to global human health. The development of disinfection method with rapid and effective antibacterial properties is urgently needed. In this study, a biomimetic silver binding peptide AgBP2 was introduced to develop a facile synthesis of biocompatible Ag2S quantum dots (QDs). The AgBP2 capped Ag2S QDs exhibited excellent fluorescent emission in the second near-infrared (NIR-II) window, with physical stability and photostability in the aqueous phase. Under 808 nm NIR laser irradiation, AgBP2-Ag2S QDs can serve not only as a photothermal agent to realize NIR photothermal conversion but also as a photocatalyst to generate reactive oxygen species (ROS). The obtained AgBP2-Ag2S QDs achieved a highly effective disinfection efficacy of 99.06 % against Escherichia coli within 25 min of NIR irradiation, which was ascribed to the synergistic effects of photogenerated ROS during photocatalysis and hyperthermia. Our work demonstrated a promising strategy for efficient bacterial disinfection.  相似文献   

13.
Aggregation-induced emission (AIE) is a cutting-edge fluorescence technology, giving highly-efficient solid-state photoluminescence. Particularly, AIE luminogens (AIEgens) with emission in the range of second near-infrared window (NIR-II, 1000–1700 nm) have displayed salient advantages for biomedical imaging and therapy. However, the molecular design strategy and underlying mechanism for regulating the balance between fluorescence (radiative pathway) and photothermal effect (non-radiative pathway) in these narrow bandgap materials remain obscure. In this review, we outline the latest achievements in the molecular guidelines and photophysical process control for developing highly efficient NIR-II emitters or photothermal agents with aggregation-induced emission (AIE) attributes. We provide insights to optimize fluorescence efficiency by regulating multi-hierarchical structures from single molecules (flexibilization) to molecular aggregates (rigidification). We also discuss the crucial role of intramolecular motions in molecular aggregates for balancing the functions of fluorescence imaging and photothermal therapy. The superiority of the NIR-II region is demonstrated by fluorescence/photoacoustic imaging of blood vessels and the brain as well as photothermal ablation of the tumor. Finally, a summary of the challenges and perspectives of NIR-II AIEgens for in vivo theranostics is given.

Structural and process controls of NIR-II AIEgens realize manipulating of radiative (R) and nonradiative (NR) decay for precise theranostics.  相似文献   

14.
We have rationally designed a new theranostic agent by coating near‐infrared (NIR) light‐absorbing polypyrrole (PPY) with poly(acrylic acid) (PAA), in which PAA acts as a nanoreactor and template, followed by growing small fluorescent silica nanoparticles (fSiO2 NPs) inside the PAA networks, resulting in the formation of polypyrrole@polyacrylic acid/fluorescent mesoporous silica (PPY@PAA/fmSiO2) core–shell NPs. Meanwhile, DOX‐loaded PPY@PAA/fmSiO2 NPs as pH and NIR dual‐sensitive drug delivery vehicles were employed for fluorescence imaging and chemo‐photothermal synergetic therapy in vitro and in vivo. The results demonstrate that the PPY@PAA/fmSiO2 NPs show high in vivo tumor uptake by the enhanced permeability and retention (EPR) effect after intravenous injection as revealed by in vivo fluorescence imaging, which is very helpful for visualizing the location of the tumor. Moreover, the obtained NPs inhibit tumor growth (95.6 % of tumors were eliminated) because of the combination of chemo‐photothermal therapy, which offers a synergistically improved therapeutic outcome compared with the use of either therapy alone. Therefore, the present study provides new insights into developing NIR and pH‐stimuli responsive PPY‐based multifunctional platform for cancer theranostics.  相似文献   

15.
Fluorescence imaging in the second near-infrared window(NIR-II, 1000-1700 nm) has demonstrated tremendous promise for biomedical applications, with its extraordinarily high resolution and deep tissue penetration. Ultrasmall gold nanoclusters(AuNCs) have shown unique features for NIR-II imaging, such as photostability and biocompatibility, as compared to organic NIR-II molecules or other inorganic NIR-II nanoparticles. Here, we report the first-in-class protein-capped ultrasmall AuNCs(BSA-AuNCs, BSA=bovine serum albumin) for simultaneous NIR-II imaging and photodynamic therapy. The BSA-AuNCs show a uniform size, high quantum yield and excellent photostability, display a high accumulation and long retention in 4T1 tumor, and are used for clear imaging of blood vessels and lymph nodes. Moreover, laser irradiation of these AuNCs can rapidly trigger ROS generation, leading to effective inhibition of tumor cell growth in vitro and in vivo. This study demonstrates the feasibility of a protein-capped ultrasmall AuNCs platform for theranostic applications by combining NIR-II imaging and photodynamic cancer therapy.  相似文献   

16.
Using polyhedral oligomeric silsesquioxane (POSS) modified by a thiol group as a protected ligand, atom‐precise multi‐heteorocluster‐based dendrimers Ag12@POSS6 ( 1 a and 1 b ) were assembled. Through the reactive ?SH groups, six POSS shell ligands stabilize the central 12‐core silver(I) cluster by diverse Ag?S interactions. When such Ag12@POSS6 complex was stimulated by different solvents (acetone or tetrahydrofuran), the core Ag12 silver(I) cluster underwent reversible structural transformation between flattened cubo‐octahedral (in 1 a ) and normal cubo‐octahedral (in 1 b ); concomitantly shell POSS clusters rearranged from pseudo‐octahedral to quasi‐octahedral. Furthermore, the film matrix modified by 1 a or 1 b showed different hydrophobicity.  相似文献   

17.
The small molecular second near-infrared(NIR-Ⅱ, 1000–1700 nm) dye-based nanotheranostics can concurrently combine deep-tissue photodiagnosis with in situ phototherapy, which occupies a vital position in the early detection and precise treatment of tumors. However, the development of small molecular NIR-Ⅱ dyes is still challenging due to the limited electron acceptors and cumbersome synthetic routes.Herein, we report a novel molecular electron acceptor, boron difluoride formazanate(BDF). Based on...  相似文献   

18.
A silver-ion-coupled black phosphorus (BP) vesicle (BP Ve-Ag+) with a second near infrared (NIR-II) window photoacoustic (PA) imaging capability was firstly constructed to maximize the potential of BP quantum dot (QD) in deeper bioimaging and diversified therapy. The embedded Ag+ could improve the relatively large band gap of BP QD via intense charge coupling based on theoretical simulation results, subsequently leading to the enhanced optical absorption capability, accompanied with the occurrence of the strong NIR-II PA signal. Guiding by NIR-II PA bioimaging, the hidden Ag+ could be precisely released with the disassembly of Ve during photodynamic therapy process and captured by macrophages located in lesion region for arousing synergistic cancer photodynamic/Ag+ immunotherapy. BP Ve-Ag+ can contrapuntally kill pathogenic bacteria and accelerate wound healing monitored by NIR-II PA imaging.  相似文献   

19.
The efficiency of antitumor immunotherapy is usually limited by the immunosuppressive tumor microenvironment (TME). In this study, we developed a chemo-immunotherapy strategy that is able to improve the immunosuppressive TME for enhancing the antitumor efficacy. The chemo-immunotherapy was achieved by the topical co-delivery of a chemotherapeutic drug, Doxorubicin (DOX), an immune checkpoint blocking antibody targeting programmed cell death protein 1 (aPD-1), and an indoleamine-2,3-dioxygenase (IDO) inhibitor, 1-methyl-d -tryptophan (d -1MT) by using a thermosensitive polypeptide hydrogel. It was revealed that the sustained DOX release from the hydrogel caused the immunogenic cell death (ICD) of B16F10 cells in vitro, and the tumor cell lysates subsequently promoted the activation of dendritic cells (DCs). After intratumoral injection into B16F10 melanoma-bearing mice, the DOX/aPD-1/D-1MT co-loaded hydrogel exhibited enhanced tumor inhibition efficacy and prolonged animal survival time, compared to the DOX/aPD-1/D-1MT mixed solution, DOX-loaded hydrogel or DOX/aPD-1 co-loaded hydrogel. The improvement of immunosuppressive TME and enhancement of antitumor immune response after the local chemo-immunotherapy were demonstrated by the augmented activation of DCs and increased infiltration of CD8+ and CD4+ T cells, as well as enhanced secretion of pro-inflammatory cytokines. Therefore, the hydrogel-based local chemo-immunotherapy system holds great potential for effective antitumor treatment.  相似文献   

20.
The complexes [Ag12(Spz)12(N‐triphos)2][Ag3(Spz)3(N‐triphos)]2 · (DMF)6 ( 1 ) and [Ag18(Spz)12(N‐triphos)4(CF3CO2)6] ( 2 ) were synthesized and structurally characterized by X‐ray diffraction [HSpz = pyrazine‐2‐thiolate, N‐triphos = tris((diphenylphosphanyl)methyl)amine]. The central [Ag6] ring with chair‐conformation in 1 and the ideally octahedral [Ag6] cluster core in 2 are both stabilized by the tripodal building units of neutral [Ag3(Spz)3(N‐triphos)] compound. The Ag ··· Ag distances of the [Ag6] moieties in 1 and 2 are 3.07 and 2.81 Å, respectively, exhibiting intermetallic interactions, which can enhance the stability of [Ag6] conformations. In addition, the π ··· π interactions between parallel pyrazine rings could impose on the building and the Ag ··· Ag interactions of these Ag–S clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号