首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrogen-centered radicals (NCRs) have been widely recognized as versatile synthetic intermediates for the construction of nitrogen containing molecules of high value. As such, there has been a long-standing interest in the field of organic synthesis to develop novel nitrogen-based radicals and explore their inherent reactivity. In this study, we present the generation of aromatic N-heterocyclic radicals and their application in a novel and diverse functionalization of unactivated alkenes. Bench-stable aromatic N-heterocyclic pyridinium salts were employed as crucial NCR precursors, which enabled the efficient conversion of various unactivated alkenes into medicinally relevant alkylated N-heterocyclic amines. This approach offers an unexplored retrosynthetic disconnection for the synthesis of related molecules that commonly possess therapeutic value. Furthermore, this platform can be extended to the synthesis of densely functionalized heterocyclic amines by utilizing disulfides and diethyl bromomalonate as radical quenchers. Mechanistic investigations indicate an energy transfer (EnT) pathway involving the formation of a transient aromatic N-heterocyclic radical, radical addition to unactivated alkenes, and subsequent generation of the amination product through either hydrogen atom transfer (HAT) or radical addition processes.  相似文献   

2.
Fourteenth group oganometallic styrene derivatives were synthesised by nitroxide-mediated controlled radical polymerization using di-tert butyl nitroxide (A-T) as initiator. This is the first time that nitroxide-controlled radical polymerization has been successfully adapted for the synthesis of new polystyrenes bearing organometallic species with controlled molecular weights and narrow polydispersities. Monomer reactivity ratios were determined in controlled nitroxide-mediated radical copolymerization between styrene and substituted styrene. All experiments permitted the synthesis of new organometallic polymers that will be used for the development of a polymer capsule for Inertial Confinement Fusion Experiments.  相似文献   

3.
2-Pyrrolidones have aroused enormous interest as a useful structural moiety in drug discovery; however, not only does their syntheses suffer from low selectivity and yield, but also it requires high catalyst loadings. The radical cyclization of 1,n-enynes and 1,n-dienes has demonstrated to be an attractive method for the synthesis of 2-pyrrolidones due to its mild reaction conditions, fewer steps, higher atom economy, excellent functional group compatibility, and high regioselectivity. Furthermore, radical receptors with unsaturated bonds (i. e. 1,n-enynes and 1,n-dienes) play a crucial role in realizing radical cyclization because of the ability to selectively introduce one or more radical sources. In this review, we discuss representative examples of methods involving the radical cyclization of 1,n-enynes and 1,n-dienes published in the last five years and discuss each prominent reaction design and mechanism, providing favorable tools for the synthesis of valuable 2-pyrrolidone for a variety of applications.  相似文献   

4.
The ophiobolin sesterterpenes are notable plant pathogens which have recently elicited significant chemical and biological attention because of their intriguing carbogenic frameworks, reactive functionalities, and emerging anticancer profiles. Reported herein is a total synthesis of (+)-6-epi-ophiobolin A in 14 steps, a task which addresses construction of the synthetically challenging spirocyclic tetrahydrofuran motif as well as several other key stereochemical problems. This work demonstrates a streamlined synthetic platform to complex ophiobolins leveraging disparate termination modes of a radical polycyclization cascade for divergent elaboration and functionalization.  相似文献   

5.
The ophiobolin sesterterpenes are notable plant pathogens which have recently elicited significant chemical and biological attention because of their intriguing carbogenic frameworks, reactive functionalities, and emerging anticancer profiles. Reported herein is a total synthesis of (+)‐6‐epi‐ophiobolin A in 14 steps, a task which addresses construction of the synthetically challenging spirocyclic tetrahydrofuran motif as well as several other key stereochemical problems. This work demonstrates a streamlined synthetic platform to complex ophiobolins leveraging disparate termination modes of a radical polycyclization cascade for divergent elaboration and functionalization.  相似文献   

6.
Molecularly imprinted polymers (MIPs) are artificial receptors which can be tailored to bind target molecules specifically. A new method, using photoinitiated atom‐transfer radical polymerization (ATRP) for their synthesis as monoliths, thin films and nanoparticles is described. The synthesis takes place at room temperature and is compatible with acidic monomers, two major limitations for the use of ATRP with MIPs. The method has been validated with MIPs specific for the drugs testosterone and S‐propranolol. This study considerably widens the range of functional monomers and thus molecular templates which can be used when MIPs are synthesized by ATRP, as well as the range of physical forms of these antibody mimics, in particular films and lithographic patterns, and their post‐functionalization from living chain‐ends.  相似文献   

7.
This report describes the synthesis of a water soluble polyaniline through a biochemical synthetic route. The oxidative free radical coupling mechanism for the synthesis of poly(p-aminobenzoic acid) is catalyzed by horseradish peroxidase in the presence of hydrogen peroxide. The resulting polymer is electrochemically active and undergoes reversible redox reactions. The polymer as synthesized is self doped and undergoes undoping in alkaline or ammonia solutions.  相似文献   

8.
Oxidative [3+3] cycloadditions offer an efficient route for six-membered-ring formation. This approach has been realized based on an electrochemical oxidative coupling of indoles/enamines with active methylene compounds followed by tandem 6π-electrocyclization leading to the synthesis of dihydropyrano[4,3-b]indoles and 2,3-dihydrofurans. The radical–radical cross-coupling of the radical species generated by anodic oxidation combined with the cathodic generation of the base from O2 allows for mild reaction conditions for the synthesis of structurally complex heterocycles.  相似文献   

9.
Our current unhealthy lifestyle and the exponential surge in the population getting affected by a variety of diseases have made pharmaceuticals or drugs an imperative part of life, making the development of innovative strategies for drug discovery or the introduction of refined, cost-effective and modern technologies for the synthesis of clinically used drugs, a need of the hour. Ever since their discovery, free radicals and radical cations or anions as reactive intermediates have captivated the chemists, resulting in an exceptional utilization of these moieties throughout the field of chemical synthesis, owing to their unprecedented and widespread reactivity. Sticking with the idea of not judging the book by its cover, despite the conventional thought process of radicals being unstable and difficult to control entities, scientists and academicians around the globe have done an appreciable amount of work utilizing both persistent as well as transient radicals for a variety of organic transformations, exemplifying them with the synthesis of significant biologically active pharmaceutical ingredients. This review truly accounts for the organic radical transformations including radical addition, radical cascade cyclization, radical/radical cross-coupling, coupling with metal-complexes and radical cations coupling with nucleophiles, that offers fascinating and unconventional approaches towards the construction of intricate structural frameworks of marketed APIs with high atom- and step-economy; complementing the otherwise employed traditional methods. This tutorial review presents a comprehensive package of diverse methods utilized for radical generation, featuring their reactivity to form critical bonds in pharmaceutical total synthesis or in building key starting materials or intermediates of their synthetic journey, acknowledging their excellence, downsides and underlying mechanisms, which are otherwise poorly highlighted in the literature. Despite great achievements over the past few decades in this area, many challenges and obstacles are yet to be unraveled to shorten the distance between the academics and the industry, which are all discussed in summary and outlook.  相似文献   

10.
Although the development of radical chain and photocatalytic borylation reactions using N-heterocyclic carbene (NHC)-borane as boron source is remarkable, the persistent problems, including the use of hazardous and high-energy radical initiators or the recyclability and photostability issues of soluble homogeneous photocatalysts, still leave great room for further development in a sustainable manner. Herein, we report a conceptually different approach toward highly functionalized organoborane synthesis by using recoverable ultrathin cadmium sulfide (CdS) nanosheets as a heterogeneous photocatalyst, and a general and mild borylation platform that enables regioselective borylation of a wide variety of alkenes (arylethenes, trifluoromethylalkenes, α,β-unsaturated carbonyl compounds and nitriles), alkynes, imines and electron-poor aromatic rings with NHC-borane as boryl radical precursor. Mechanistic studies and density functional theory (DFT) calculations reveal that both photogenerated electrons and holes on the CdS fully perform their own roles, thereby resulting in enhancement of photocatalytic activity and stability of CdS.  相似文献   

11.
Although recent years have witnessed an impressive confluence of experiments and kinetic and statistical theories, presently there is no comprehensive understanding of the interrelation between chemical sequences in synthetic copolymers and the conditions of synthesis. For this problem, numerical simulations in conjunction with simple models provide a rather detailed answer. A survey is given of the simulation methods as applied to the design of nontrivial chemical sequences in copolymers obtained via heterogeneous radical polymerization. This review is focused on a recently developed approach, called conformation‐dependent sequence design, which takes into account a strong coupling between the conformation and primary structure of copolymers during their synthesis. We consider some applications of this technique, including the following problems and systems: (1) the design of sequences with long‐range correlations via solution radical copolymerization with simultaneous globule formation, (2) radical copolymerization near a chemically homogeneous surface leading to a copolymer with a gradient primary structure, and (3) template copolymerization near chemically patterned surfaces. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5339–5353, 2004  相似文献   

12.
The development of novel polymerization capable of yielding polymers with low molecular weight distribution (Đ) is essential and significant in polymer chemistry, where monofunctional initiator contains only one initiation site in these polymerizations generally. Here, ketyl radical anion species is introduced to develop a novel Ketyl Mediated Polymerization (KMP), which enables radical polymerization at carbon radical site and anionic ring-opening polymerization at oxygen anion site, respectively. Meanwhile, polymerization and corresponding organic synthesis generally couldn't be performed simultaneously in one pot. Through KMP, organic synthesis and polymerization are achieved in one pot, where small molecules (cyclopentane derivates) and polymers with low Đ are successfully prepared under mild condition simultaneously. At the initiation step, both organic synthesis and polymerization are initiated by single electron transfer reaction with ketyl radical anion formation. Cyclopentane derivates are synthesized through 3–3 coupling reaction and cyclization. Polystyrene and polycaprolactone with low Đ and a full monomer conversion are prepared by KMP via radical polymerization and anionic ring-opening polymerization, respectively. This work therefore enables both organic synthesis and two different polymerizations from same initiation system, which saves time, labour, resource and energy and expands the reaction mode and method libraries of organic chemistry and polymer chemistry.  相似文献   

13.
Free radical addition reactions in the presence of cobaloximes and related compounds have been modelled. Several mechanisms are presented and similarities with the “persistent radical effect” noted by Daikh and Finke are discussed. Cobaloximes and salophen
  • 1 System. name: N-acetyl-p-aminophenyl salicylate.
  • derivatives are widely used in organic synthesis to build carbon-carbon bonds, whereas in polymer synthesis they are used as catalytic chain transfer agents in the production of oligomers. This work shows that these reactions are closely related and also demonstrates the influence that an external radical source has on the overall reaction kinetics.  相似文献   

    14.
    Oxidative [3+3] cycloadditions offer an efficient route for six‐membered‐ring formation. This approach has been realized based on an electrochemical oxidative coupling of indoles/enamines with active methylene compounds followed by tandem 6π‐electrocyclization leading to the synthesis of dihydropyrano[4,3‐b]indoles and 2,3‐dihydrofurans. The radical–radical cross‐coupling of the radical species generated by anodic oxidation combined with the cathodic generation of the base from O2 allows for mild reaction conditions for the synthesis of structurally complex heterocycles.  相似文献   

    15.
    A unified strategy involving visible‐light‐induced iminyl‐radical formation has been established for the construction of pyridines, quinolines, and phenanthridines from acyl oximes. With fac‐[Ir(ppy)3] as a photoredox catalyst, the acyl oximes were converted by 1 e? reduction into iminyl radical intermediates, which then underwent intramolecular homolytic aromatic substitution (HAS) to give the N‐containing arenes. These reactions proceeded with a broad range of substrates at room temperature in high yield. This strategy of visible‐light‐induced iminyl‐radical formation was successfully applied to a five‐step concise synthesis of benzo[c]phenanthridine alkaloids.  相似文献   

    16.
    The present account discusses in detail various mechanistic features of the degenerative radical addition‐transfer of xanthates and related thiocarbonylthio congeners and makes a comparison with the more classical Kharasch reactions to which it is similar in certain aspects. The xanthate group reacts reversibly with the ‘active’ radicals in the medium and is able to store them in a somewhat inactive form. This increases their effective lifetime in the medium and, at the same time, lowers their absolute concentration while regulating their relative concentration. These properties translate into a powerful carbon–carbon bond forming process, especially as regards intermolecular additions to electronically unbiased (‘unactivated’) alkenes. Most functional groups are tolerated, in particular polar functions that often require protection with other chemistries. This broad versatility is illustrated by examples where the xanthate addition to the alkene is combined with other, more classical reactions to provide a convergent, rapid access to a wide range of useful structures. Emphasis has been placed on the synthesis of open chain and more complex carbocycles, as well as on the transfer of chirality. These ‘radical alliances’ include organosilicon chemistry, the Diels–Alder cycloaddition and cheletropic extrusion of sulfur dioxide, the Claisen sigmatropic rearrangement, and the Horner–Wadsworth–Emmons (HWE) condensation.  相似文献   

    17.
    Copper(0) mediated radical polymerization is an efficient and versatile polymerization technique which allows the control of acrylates and methacrylates with an unprecedented maintenance of end group fidelity (~100%) during the polymerization. In this highlight, we summarize recent works using Cu(0)‐mediated radical polymerization for the synthesis of multiblock copolymers via an iterative approach. This approach has been successfully implemented for the synthesis of decablock copolymers, constituted of blocks with a degree of polymerization ranging from 3–4 to 100 units as well as for the preparation of multiblock star polymers. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2083–2098  相似文献   

    18.
    A unified strategy involving visible‐light‐induced iminyl‐radical formation has been established for the construction of pyridines, quinolines, and phenanthridines from acyl oximes. With fac‐[Ir(ppy)3] as a photoredox catalyst, the acyl oximes were converted by 1 e reduction into iminyl radical intermediates, which then underwent intramolecular homolytic aromatic substitution (HAS) to give the N‐containing arenes. These reactions proceeded with a broad range of substrates at room temperature in high yield. This strategy of visible‐light‐induced iminyl‐radical formation was successfully applied to a five‐step concise synthesis of benzo[c]phenanthridine alkaloids.  相似文献   

    19.
    Despite the significance of sultines in synthesis, medicine, and materials science, the chemistry of sultines has remained unexplored due to their inaccessibility. Herein, we demonstrate the development of a photoredox-catalyzed multifluoromethyl radical addition/SO2 incorporation/polar cyclization cascade approach to multifluoromethylated γ-sultines. The reactions proceed by single electron transfer induced multifluoromethyl radical addition to an alkene followed by SO2 incorporation, and single-electron reduction for polar 5-exo-tet cyclization. Key to the success of the protocol is the use of easily oxidizable multifluoroalkanesulfinates as bifunctional reagents. The reactions proceed with excellent functional-group tolerance to deliver γ-sultines in moderate to excellent yields.  相似文献   

    20.
    Although 1,2,4,5-tetrazines or s-tetrazines have been known in the literature for more than a century, their coordination chemistry has become increasingly popular in recent years due to their unique redox activity, multiple binding sites and their various applications. The electron-poor character of the ring and stabilization of the radical anion through all four nitrogen atoms in their metal complexes provide new aspects in molecular magnetism towards the synthesis of new high performing Single Molecule Magnets (SMMs). The scope of this review is to examine the role of s-tetrazine radical ligands in transition metal and lanthanide based SMMs and provide a critical overview of the progress thus far in this field. As well, general synthetic routes and new insights for the preparation of s-tetrazines are discussed, along with their redox activity and applications in various fields. Concluding remarks along with the limitations and perspectives of these ligands are discussed.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号