首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structurally robust tetradentate gold(III)‐emitters have potent material applications but are rare and unprecedented for those displaying thermally activated delayed fluorescence (TADF). Herein, a novel synthetic route leading to the preparation of highly emissive, charge‐neutral tetradentate [C^C^N^C] gold(III) complexes with 5‐5‐6‐membered chelate rings has been developed through microwave‐assisted C?H bond activation. These complexes show high thermal stability and with emission origin (3IL, 3ILCT, and TADF) tuned by varying the substituents of the C^C^N^C ligand. With phenoxazine/diphenylamine substituent, we prepared the first tetradentate gold(III) complexes that are TADF emitters with emission quantum yields of up to 94 % and emission lifetimes of down to 0.62 μs in deoxygenated toluene. These tetradentate AuIII TADF emitters showed good performance in vacuum‐deposited OLEDs with maximum EQEs of up to 25 % and LT95 of up to 5280 h at 100 cd m?2.  相似文献   

2.
Highly efficient sky-blue luminescent gold(III) complexes with emission quantum yields up to 82 %, lifetimes down to 0.67 μs and emission peak maxima at 470–484 nm were prepared through a consideration of pincer gold(III) donor–acceptor complexes. Photophysical studies and time-dependent density functional theory (TDDFT) calculations revealed that the emission nature of these gold(III) complexes is most consistent with TADF. Solution-processed OLEDs with these gold(III) complexes as dopants afforded electroluminescence maxima at 465–473 nm with FWHM of 64–67 nm and maximum external quantum efficiencies (EQEs) of up to 15.25 %. This research demonstrates the first example of gold(III)-OLEDs showing electroluminescence maxima at smaller than 470 nm, and highlights the potential of using gold(III)-TADF emitters in the development of high efficiency blue OLEDs and blue emissive dopant in WOLEDs.  相似文献   

3.
Herein are described the synthesis, photophysical properties and applications of a series of luminescent cyclometalated AuIII complexes having an auxiliary aryl ligand. These complexes show photoluminescence with emission quantum yields of up to 0.79 in solution and 0.84 in thin films (4 wt % in PMMA) at room temperature, both of which are the highest reported values among AuIII complexes. Thermally activated delayed fluorescence (TADF) is the emission origin for some of these complexes. Solution‐processed OLEDs made with these complexes showed sky‐blue to green electroluminescence with external quantum efficiencies (EQEs) of up to 23.8 %, current efficiencies of up to 70.4 cd A−1, and roll‐off of down to 1 %, highlighting the bright prospect of AuIII‐TADF emitters in OLEDs.  相似文献   

4.
Here, we report the design and synthesis of a new class of fused heterocyclic alkynyl ligand-containing gold(iii) complexes, which show tunable emission colors spanning from the yellow to red region in the solid state and exhibit thermally activated delayed fluorescence (TADF) properties. These complexes display high photoluminescence quantum yields of up to 0.87 and short excited-state lifetimes in sub-microsecond timescales, yielding high radiative decay rate constants on the order of up to 106 s−1. The observation of the drastic enhancement in the emission intensity of the complexes with insignificant change in the excited-state lifetime upon increasing the temperature from 200 to 360 K indicates an increasing radiative decay rate. The experimentally estimated energy splitting between the lowest-lying singlet excited state (S1) and the lowest-lying triplet excited state (T1), ΔES1–T1, is found to be as small as ∼0.03 eV (250 cm−1), comparable to the value of ∼0.05 eV (435 cm−1) obtained from computational studies. The delicate choice of the cyclometalating ligand and the fused heterocyclic ligand is deemed the key to induce TADF through the control of the energy levels of the intraligand and the ligand-to-ligand charge transfer excited states. This work represents the realization of highly emissive yellow- to red-emitting gold(iii) TADF complexes incorporated with fused heterocyclic alkynyl ligands and their applications in organic light-emitting devices.

We report the design of a new class of fused heterocyclic alkynyl ligand-containing gold(iii) complexes, which shows tunable emission colors spanning yellow to red region and exhibits thermally activated delayed fluorescence (TADF) properties.  相似文献   

5.
Two-coordinate donor-metal-acceptor type coinage metal complexes displaying efficient thermally activated delayed fluorescence (TADF) have been unveiled to be highly appealing candidates as emitters for organic light-emitting diodes (OLEDs). Herein a series of green to yellow TADF gold(I) complexes with alkynyl ligands has been developed for the first time. The complexes exhibit high photoluminescence quantum yields (PLQYs) of up to 0.76 in doped films (5 wt % in PMMA) at room temperature. The modifications of alkynyl ligands with electron-donating amino groups together with the use of electron-deficient carbene ligands induce ligand-to-ligand charge transfer excited states that give rise to TADF emission. Spectroscopic and density functional theory (DFT) calculations reveal the roles of electron-donating capability of the alkynyl ligand in tuning the excited-state properties. Solution-processed organic light-emitting diodes (OLEDs) using the present complexes as emitters achieve maximum external quantum efficiency (EQE) of up to 20 %.  相似文献   

6.
A series of two-coordinate AuI and CuI complexes ( 3 a , 3 b and 5 a , 5 b ) are reported as new organometallic thermally activated delayed fluorescence (TADF) emitters, which are based on the carbene–metal–carbazole model with a pyridine-fused 1,2,3-triazolylidene (PyTz) ligand. PyTz features low steric hindrance and a low-energy LUMO (LUMO=−1.47 eV) located over the π* orbitals of the whole ligand, which facilitates intermolecular charge transfer between a donor (carbazole) and an accepter (PyTz). These compounds exhibit efficient TADF with microsecond lifetimes. Temperature-dependent photoluminescence kinetics of 3 a supports a rather small energy gap between S1 and T1E =60 meV). Further experiments reveal that there are dual-emission properties from a monomer–dimer equilibrium in solution, exhibiting single-component multicolor emission from blue to orange, including white-light emission.  相似文献   

7.
Metal‐TADF (thermally activated delayed fluorescence) emitters hold promise in the development of next generation light‐emitting materials for display and lighting applications, examples of which are, however, largely confined to CuI and recently AuI, AgI, and AuIII emitters. Herein is described the design strategy for an unprecedented type of metal‐TADF emitter based on inexpensive tungsten metal chelated with Schiff base ligand that exhibit high emission quantum yields of up to 56 % in solutions and 84 % in thin‐film (5 wt % in 1,3‐bis(N‐carbazolyl)benzene, mCP) at room temperature. Femtosecond time‐resolved emission (fs‐TRE) spectroscopy and DFT calculations were undertaken to decipher the TADF properties. Solution‐processed OLEDs fabricated with the W‐TADF emitter demonstrated external quantum efficiency (EQE) and luminance of up to 15.6 % and 16890 cd m?2, respectively.  相似文献   

8.
N-Heterocyclic carbene (NHC) cyclometalated gold(III) complexes remain very scarce and therefore their photophysical properties remain currently underexplored. Moreover, gold(III) complexes emitting in the blue region of the electromagnetic spectrum are rare. In this work, a series of four phosphorescent gold(III) complexes was investigated bearing four different NHC monocyclometalated (C^C*)-type ligands and a dianionic (N^N)-type ancillary ligand ((N^N)=5,5’-(propane-2,2-diyl)bis(3-(trifluoromethyl)-1 H-pyrazole) (mepzH2)). The complexes exhibit strong phosphorescence when doped in poly(methyl methacrylate) (PMMA) at room temperature, which were systematically tuned from sky-blue [λPL=456 nm, CIE coordinates: (0.20, 034)] to green [λPL=516 nm, CIE coordinates: (0.31, 0.54)] by varying the monocyclometalated (C^C*) ligand framework. The complexes revealed high quantum efficiencies (ϕPL) of up to 43 % and excited-state lifetimes (τ0) between 15–266 μs. The radiative rate constant values found for these complexes (kr=103–104 s−1) are the highest found in comparison to previously known best-performing monocyclometalated gold(III) complexes. Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations of these complexes further lend support to the excited-state nature of these complexes. The calculations showed a significant contribution of the gold(III) metal center in the lowest unoccupied molecular orbitals (LUMOs) of up to 18 %, which was found to be unique for this class of cyclometalated gold(III) complexes. Additionally, organic light-emitting diodes (OLEDs) were fabricated by using a solution process to provide the first insight into the electroluminescent (EL) properties of this new class of gold(III) complexes.  相似文献   

9.
A series of [−2, −1, 0] charged-ligand based iridium(III) complexes of [Ir(bph)(bpy)(acac)] ( 1 ), [Ir(bph)(2MeO-bpy)(acac)] ( 2 ), [Ir(bph)(2CF3-bpy)(acac)] ( 3 ), [Ir(bph)(bpy)(2tBu-acac)] ( 4 ) and [Ir(bph)(bpy)(CF3-acac)] ( 5 ), which using biphenyl as dianionic ligand [−2], acetylacetone (or its derivatives) as monoanionic ligand [−1], and 2,2′-bipyridine (or its derivatives) as neutral ligand [0] were designed and synthesized. The chemical structures were well characterized. All of the ligands have simple chemical structures, thus further making the complexes have excellent thermal stability and are easy to sublimate and purify. Phosphorescent characteristics with short emission lifetime were demonstrated for these emitters. Notably, all of the complexes exhibit remarkable deep red/near infrared emission, which is quite different from the reported [−1, −1, −1] charged-ligand based iridium(III) complexes. The photophysical properties of these complexes are regularly improved by introducing electron-donating or -withdrawing groups into [−1] or [0] charged-ligand. The related organic light-emitting diodes exhibited deep red/near infrared emission with acceptable external quantum efficiency and low turn-on voltage (<2.6 V). This work provides a new idea for the construction of new type phosphorescent iridium(III) emitters with different valence states of [−2, −1, 0] charged ligands, thus offering new opportunities and challenges for their optoelectronic applications.  相似文献   

10.
A series of donor-acceptor-donor (D-A-D) type blue thermally activated delayed fluorescence (TADF) emitters, namely, 2,7-DtBuCz-AD, 3,6-DtBuCz-AD, 3,6-DMAC-AD, and 3,6-DMAC-AD-CF3, were developed with highly rigid acridin-9(10H)-one (i.e. acridone [AD]) as acceptor. The regioisomeric effect study revealed that the attachment of donors at 3,6-sites of AD ring dramatically enhanced TADF ratio in comparison with the 2,7-site isomer. On the one hand, by varying donors from dimethylacridine (DMAC) to tert-butylcarbazole (tBuCz) at 3,6-sites of AD ring, the emission color purity of blue TADF emitters was improved from sky blue to deep blue. On the other hand, by introducing trifluoromethyl (CF3) onto 9-site phenyl ring of 3,6-DtBuCz-AD, the efficiency stability of the sky blue emission for 3,6-DMAC-AD-CF3 was remarkably improved. The deep blue organic light-emitting diode (OLED) of 3,6-DtBuCz-AD exhibited a maximum external quantum efficiency (EQEmax) of 17.88% with CIE coordinates of (0.15, 0.08), which is among the best performances ever reported for deep blue TADF-OLEDs. The sky-blue OLED of 3,6-DMAC-AD realized an EQEmax of 23.16%. And with the incorporation of CF3, the sky blue device of 3,6-DMAC-AD-CF3 exhibited extremely low efficiency loss of only 5.1% at the high brightness of 1,000 cd/m2.  相似文献   

11.
In this study, firstly, two single substitute novel ligands have been synthesized by reacting melamine with 3,4,-dihydroxybenzaldeyhde or 4-carboxybenzaldehyde. Then, eight new mono nuclear single substitute [Salen/Salophen Fe(III) and Cr(III)] complexes have been synthesized by reacting the ligands [2-(3,4-dihydroxybenzimino)-4,6-diamimo-1,3,5-triazine and 2-(4-carboxybenzimino)-4,6-diamimo-1,3,5-triazine)] with tetradentate Schiff bases N,N′-bis(salicylidene)ethylenediamine-(salenH2) or bis(salicylidene)-o-phenylenediamine-(salophen H2). And then, all ligands and complexes have been characterized by means of elementel analysis, FT-IR spectroscopy, 1H NMR, LC–MS, thermal analyses and magnetic suscebtibility measurements. Finally, metal ratios of the prepared complexes were determined using AAS. The complexes have also been characterized as disorted octahedral low-spin Fe(III) and Cr(III) bridged by catechol and COO? groups.  相似文献   

12.
The perchlorato ligand of perchloratobis(pentafluorophenyl)triphenylphosphinegold(III) can easily be displaced by different types of ligands. Neutral complexes are obtained by adding anionic ligands (N?3, HCO?3, while cationic complexes are obtained by adding neutral monodentate ligands (OPPh3, OAsPh3, ONC5H5, ONC9H7, NC9H7, PEt3, PBu3, PPh2Me). Only with very weak σ-donors (SO2, CO2, NC5F5, NC5Cl5) does no reaction take place. The addition of neutral bidentate ligands leads to cationic gold(III) complexes with diphosphines and diarsines, whereas nitrogen- or oxygen-donors give rise to reductive elimination reactions which lead to gold(I) complexes.No reaction takes place with mono-olefins while cyclopolyolefins give rather unstable gold(I) complexes which readily decompose. Only the gold(I) complex with 1,5-cyclooctadiene can be isolated.  相似文献   

13.
The synthesis, characterization and photoluminescent properties of four cyclometalated (C N)-type gold(III) complexes bearing a bidentate diacetylide ligand, tolan-2,2’-diacetylide (tda), are reported. The complexes exhibit highly tunable excited state properties and show photoluminescence (PL) across the entire visible spectrum from sky-blue (λPL=493 nm) to red (λPL=675 nm) with absolute PL quantum yields (PLQY) of up to 75 % in solution, the highest PLQY found for any monocyclometalated Au(III) complex in solution. As a consequence of the use of the strongly rigidifying diacetylide bidentate ligand, a significant increase in the excited state lifetimes (τ0=16–258 μs) was found in solution and in thin films. The complexes showed remarkable singlet oxygen generation in aerated solution with absolute singlet oxygen quantum yield (ϕ) values reaching up to 7.5×10−5 and singlet oxygen lifetimes (τ0) in the range of 66–95 μs. Furthermore, the radiative and non-radiative rates of singlet oxygen were determined using the ϕ and τ0 values and correlations are drawn between the formation of singlet oxygen and its interaction with cyclometalated (C N) gold(III) complexes.  相似文献   

14.
The ternary complexation of neodymium(III) and samarium(III) with triethylene glycol (EO3) and picrate anion (Pic) were characterized by elemental analyses, FTIR (Fourier-transform infrared) spectroscopy, single crystal X-ray diffraction, and photoluminescence (PL). Both the [Nd(Pic)(H2O)2(NO3)(EO3)](Pic) and [Sm(Pic)(H2O)2(NO3)(EO3)](Pic)·H2O complexes were isostructural with a ten-coordination number. In both complexes, the picrate and nitrate anions were coordinated to Ln(III) in a bidentate manner, and with the the EO3 ligand in a tetradentate manner, the addition of two water molecules maintained a ten-coordination number. The lighter lanthanide-picrate complexes formed a ten-coordination number due to the lanthanide contraction effect, acyclic polyether chain length, and number of donor oxygen atoms. The acyclic EO3 ligand affected photoluminescent intensity and its conformation on the structure of the [Ln(Pic)(NO3)(H2O)2(EO3)]+ moiety. Photoluminescent measurement showed complex Nd(III) emissions at 403, 486, and 682?nm, with the strongest emission peak at 403?nm. Formation of these peaks occurred due to the intraligand π–π transitions of the Pic anion. The Sm(III) complex exhibited the emission characteristic of the Sm(III) ion in the red spectral region at 616.7?nm (4G5/26H9/2 transition), even though the ligand emissions were also observed in the PL spectrum. The emission intensity of the 4f–4f transitions in the Sm complex was significantly higher than that found in its salt. We noted that the [Sm(Pic)(H2O)2(NO3)(EO3)](Pic)·H2O complex was an excellent red-light-emitter and would be considered as a candidate material for organic light emitting diodes.  相似文献   

15.
A family of organic emitters with a donor–σ–acceptor (D‐σ‐A) motif is presented. Owing to the weakly coupled D‐σ‐A intramolecular charge‐transfer state, a transition from the localized excited triplet state (3LE) and charge‐transfer triplet state (3CT) to the charge‐transfer singlet state (1CT) occurred with a small activation energy and high photoluminescence quantum efficiency. Two thermally activated delayed fluorescence (TADF) components were identified, one of which has a very short lifetime of 200–400 ns and the other a longer TADF lifetime of the order of microseconds. In particular, the two D‐σ‐A materials presented strong blue emission with TADF properties in toluene. These results will shed light on the molecular design of new TADF emitters with short delayed lifetimes.  相似文献   

16.
Realizing high photoluminescence quantum yield (PLQY) in the near-infrared (NIR) region is challenging and valuable for luminescent material, especially for thermally activated delay fluorescence (TADF) material. In this work, we report two achiral cyclic trinuclear Au(I) complexes, Au3(4-Clpyrazolate)3 and Au3(4-Brpyrazolate)3 (denoted as Cl−Au and Br−Au) , obtained through the reaction of 4-chloro-1H-pyrazole and 4-bromo-1H-pyrazole with Au(I) salts, respectively. Both Cl−Au and Br−Au exhibit TADF with high PLQY (>70 %) in the NIR I (700–900 nm) (λmax = 720 nm) region, exceeding other NIR−TADF emitters in the solid state. Photophysical experiments and theoretical calculations confirmed the efficient NIR−TADF properties of Cl−Au and Br−Au were attributed to the small energy gap ΔE(S1-T2) (S = singlet, T = triplet) and the large spin-orbital coupling induced by ligand-to-metal-metal charge transfer of molecular aggregations. In addition, both complexes crystallize in the achiral Pna21 space group (mm2 point group) and are circularly polarized light (CPL) active with maxima luminescent dissymmetry factor |glum| of 3.4 × 10−3 ( Cl−Au ) and 2.7 × 10−3 ( Br−Au ) for their crystalline powder samples, respectively. By using Cl−Au as the emitting ink, 3D-printed luminescent logos are fabricated, which own anti-counterfeiting functions due to its CPL behavior dependent on the crystallinity.  相似文献   

17.
Ruthenium(III) complexes of three tetradentate Schiff bases with N2O2 donors formulated as [RuCl(LL1)(H2O)], [RuCl(LL2)(H2O)] and [RuCl(LL3)(H2O)] were synthesized and characterized by elemental analyses, molar conductance, FTIR, and electronic spectral measurements. The FTIR data showed that the tetradentate Schiff base ligands coordinate to Ru ions through the azomethine nitrogen and enolic oxygen. The antioxidant activities of the complexes were investigated through scavenging activity on 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2′-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radicals. The DPPH activity for [RuCl(LL2)(H2O)] with IC50 = 0.031 mg mL?1 was higher than the values obtained for the other Ru(III) compounds. The study revealed that the synthesized Ru(III) complexes of the tetradentate Schiff base exhibited strong scavenging activities against DPPH and moderate against ABTS radicals. In addition, the antiproliferative studies of the complexes were also tested against human renal cancer cells (TK10), human melanoma cancer cells (UACC62), and human breast cancer cells (MCF7) using the SRB assay. The results indicated that the Ru(III) complexes showed low anticancer activities against the tested human cancer cell lines.  相似文献   

18.
Efficient OLED devices have been fabricated using organometallic complexes of platinum group metals. Still, the high material cost and low stability represent central challenges for their application in commercial display technologies. Based on its innate stability, gold(III) complexes are emerging as promising candidates for high-performance OLEDs. Here, a series of alkynyl-, N-heterocyclic carbene (NHC)- and aryl-gold(III) complexes stabilized by a κ3-(N^C^C) template have been prepared and their photophysical properties have been characterized in detail. These compounds exhibit good photoluminescence quantum efficiency (ηPL) of up to 33 %. The PL emission can be tuned from sky-blue to yellowish green colors by variations on both the ancillary ligands as well as on the pincer template. Further, solution-processable OLED devices based on some of these complexes display remarkable emissive properties (ηCE 46.6 cd.A−1 and ηext 14.0 %), thus showcasing the potential of these motifs for the low-cost fabrication of display and illumination technologies.  相似文献   

19.
Phosphorescent mono-cyclometalated gold(III) complexes and their possible applications in organic light emitting diodes (OLEDs) can be significantly enhanced with their improved thermal stability by suppressing the reductive elimination of the respective ancillary ligands. A rational tuning of the π-conjugation of the cyclometalating ligand in conjunction with the non-conjugated 5,5′-(1-methylethylidene)bis(3-trifluoromethyl)-1H-pyrazole were used as a strategy to achieve room-temperature phosphorescence emission in a new series of gold(III) complexes. Photophysical studies of the newly synthesised and characterised complexes revealed phosphorescent emission of the complexes at room temperature in solution, thin films when doped in poly(methyl methacrylate) (PMMA) as well as in 2-Me-THF at 77 K. The complexes exhibit highly tuneable emission behaviour with photoluminescent quantum efficiencies up to 22 % and excited state lifetimes in the range of 63–300 μs. Detailed photophysical investigations in combination with DFT and TD-DFT calculations support the conclusion that the emission properties are strongly dictated by both the cyclometalating ligand and the ancillary chelating ligand. Thermogravimetric studies further show that the thermal stability of the AuIII complexes has been drastically enhanced, making these complexes more attractive for OLED applications.  相似文献   

20.
Four new trinuclear Fe(III) and Cr(III) complexes involving tetradentate Schiff bases N,N′-bis(salicylidene)ethylenediamine-(salenH2) or bis(salicylidene)-o-phenylenediamine-(salophenH2) with 2,4,6-tris(3,4-dihydroxybenzimino)-1,3,5-triazine have been synthesized and characterized by means of elemental analysis, 1H N.M.R., FT-IR spectroscopy, thermal analyses and magnetic susceptibility measurements. The complexes have also been characterized as low-spin distorted octahedral Fe(III) and Cr(III) bridged by catechol group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号