首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Enantioselective carboaminations of olefins constitute an attractive strategy for a rapid increase in molecular complexity from readily available starting materials. Reported here is an intermolecular asymmetric carboamination of acrylates using rhodium(III)‐catalyzed alkenyl C?H activations of N‐enoxysuccinimides to generate the nitrogen and carbon portion for the transfer. A rhodium complex equipped with a tailored bulky trisubstituted chiral Cpx ligand ensures carboamination chemoselectivity as well high levels of enantioinduction. The transformation operates under mild reaction conditions at ambient temperatures and provides access to a variety of α‐amino esters in good yields and excellent enantiomeric ratios of >99.5:0.5.  相似文献   

2.
Dioxygen is used as the oxygenation agent in the rhodium‐mediated conversion of nitriles into amides. The characterization of intermediate species and model compounds as well as isotope‐labeling studies provided an insight into the reaction mechanism. The conversions of rhodium hydroperoxido or methylperoxido complexes with nitriles into metallacyclic rhodium‐ κ2‐(N,O)‐peroxyimidate compounds represent essential key steps. The former are accessible from a rhodium(III) peroxido complex and the latter represent rhodium derivatives of Payne’s reagent (peroxyimidic acids).  相似文献   

3.
A protocol for the three‐component 1,4‐carboamination of dienes is described. Synthetically versatile Weinreb amides were coupled with 1,3‐dienes and readily available dioxazolones as the nitrogen source using [Cp*RhCl2]2‐catalyzed C?H activation to deliver the 1,4‐carboaminated products. This transformation proceeds under mild reaction conditions and affords the products with high levels of regio‐ and E‐selectivity. Mechanistic investigations suggest an intermediate RhIII–allyl species is trapped by an electrophilic amidation reagent in a redox‐neutral fashion.  相似文献   

4.
Group 9 metals, in particular RhIII complexes with cyclopentadienyl ligands, are competent C−H activation catalysts. Recently, a Cp*RhIII-catalyzed reaction of alkenes with N-enoxyphthalimides showed divergent outcome based on the solvent, with carboamination favored in methanol and cyclopropanation in 2,2,2-trifluoroethanol (TFE). Here, we create selectivity and activity maps capable of unravelling the catalyst-solvent interplay on the outcome of these competing reactions by analyzing 42 cyclopentadienyl metal catalysts, CpXMIII (M=Co, Rh, Ir). These maps not only can be used to rationalize previously reported experimental results, but also capably predict the behavior of untested catalyst/solvent combinations as well as aid in identifying experimental protocols that simultaneously optimize both catalytic activity and selectivity (solutions in the Pareto front). In this regard, we demonstrate how and why the experimentally employed Cp*RhIII catalyst represents an ideal choice to invoke a solvent-induced change in reactivity. Additionally, the maps reveal the degree to which even perceived minor changes in the solvent (e. g., replacing methanol with ethanol) influence the ratio of carboamination and cyclopropanation products. Overall, the selectivity and activity maps presented here provide a generalizable tool to create global pictures of anticipated reaction outcome that can be used to develop new experimental protocols spanning metal, ligand, and solvent space.  相似文献   

5.
The rhodium‐catalyzed, highly N2‐ and N1‐selective coupling of benzotriazoles with allenes is reported. The exceptionally high N2 and N1 selectivities were achieved by using a rhodium(I)/DPEphos and rhodium(I)/JoSPOphos catalyst, respectively. This method permits the atom‐economic synthesis of valuable branched N2‐ and N1‐allylated benzotriazole derivatives and allows for preliminary studies of their reactivity.  相似文献   

6.
Chiral cyclopentadienyl rhodium complexes promote highly enantioselective enol‐directed C(sp2)‐H functionalization and oxidative annulation with alkynes to give spiroindenes containing all‐carbon quaternary stereocenters. High selectivity between two possible directing groups, as well as control of the direction of rotation in the isomerization of an O‐bound rhodium enolate into the C‐bound isomer, appear to be critical for high enantiomeric excesses.  相似文献   

7.
Chiral cyclopentadienyl rhodium complexes promote highly enantioselective enol‐directed C(sp2)‐H functionalization and oxidative annulation with alkynes to give spiroindenes containing all‐carbon quaternary stereocenters. High selectivity between two possible directing groups, as well as control of the direction of rotation in the isomerization of an O‐bound rhodium enolate into the C‐bound isomer, appear to be critical for high enantiomeric excesses.  相似文献   

8.
We report full details of the synthesis and characterization of monohydride-dichloro rhodium(III) complexes bearing chiral diphosphine ligands, such as (S)-BINAP, (S)-DM-SEGPHOS, and (S)-DTBM-SEGPHOS, producing cationic triply chloride bridged dinuclear rhodium(III) complexes ( 1 a : (S)-BINAP; 1 b : (S)-DM-SEGPHOS) and a neutral mononuclear monohydride-dichloro rhodium(III) complex ( 1 c : (S)-DTBM-SEGPHOS) in high yield and high purity. Their solid state structure and solution behavior were determined by crystallographic studies as well as full spectral data, including DOSY NMR spectroscopy. Among these three complexes, 1 c has a rigid pocket surrounded by two chloride atoms bound to the rhodium atom together with one tBu group of (S)-DTBM-SEGPHOS for fitting to simple olefins without any coordinating functional groups. Complex 1 c exhibited superior catalytic activity and enantioselectivity for asymmetric hydrogenation of exo-olefins and olefinic substrates. The catalytic activity of 1 c was compared with that of well-demonstrated dihydride species derived in situ from rhodium(I) precursors such as [Rh(cod)Cl]2 and [Rh(cod)2]+[BF4] upon mixing with (S)-DTBM-SEGPHOS under dihydrogen.  相似文献   

9.
New isocyanide ligands with meta‐terphenyl backbones were synthesized. 2,6‐Bis[3,5‐bis(trimethylsilyl)phenyl]‐4‐methylphenyl isocyanide exhibited the highest rate acceleration in rhodium‐catalyzed hydrosilylation among other isocyanide and phosphine ligands tested in this study. 1H NMR spectroscopic studies on the coordination behavior of the new ligands to [Rh(cod)2]BF4 indicated that 2,6‐bis[3,5‐bis(trimethylsilyl)phenyl]‐4‐methylphenyl isocyanide exclusively forms the biscoordinated rhodium–isocyanide complex, whereas less sterically demanding isocyanide ligands predominantly form tetracoordinated rhodium–isocyanide complexes. FTIR and 13C NMR spectroscopic studies on the hydrosilylation reaction mixture with the rhodium–isocyanide catalyst showed that the major catalytic species responsible for the hydrosilylation activity is the Rh complex coordinated with the isocyanide ligand. DFT calculations of model compounds revealed the higher affinity of isocyanides for rhodium relative to phosphines. The combined effect of high ligand affinity for the rhodium atom and the bulkiness of the ligand, which facilitates the formation of a catalytically active, monoisocyanide–rhodium species, is proposed to account for the catalytic efficiency of the rhodium–bulky isocyanide system in hydrosilylation.  相似文献   

10.
Josephine S. Nakhla 《Tetrahedron》2009,65(33):6549-9061
A strategy for the stereoselective preparation of enantiomerically enriched cis-2,6-disubstituted piperazines from amino acid precursors is described. The target compounds are generated in 95-99% ee with good to excellent levels of diastereoselectivity (usually 14:1 to >20:1) using Pd-catalyzed carboamination reactions between aryl or alkenyl halides and substituted ethylenediamine derivatives to form the heterocyclic rings. The synthesis requires only 4-5 steps from commercially available amino acids, and allows for the modular construction of piperazines bearing different substituents at N1, N4, C2, and C6. The use of this strategy for the construction of 2,3-disubstituted piperazines, fused bicyclic piperazines, and tetrahydroquinoxalines is also reported. In addition, the mechanism of the key carboamination reactions is discussed, and new models that predict and explain the stereochemical outcome of these transformations are presented.  相似文献   

11.
Cationic rhodium complexes of (R,R)-1,4-bis(diphenylphosphanyl)butane-2,3-diol and cyclic diolefins exhibit temperature-dependent 31P- and 103Rh-NMR spectra which are best explained by a hemilabile coordination of one of the hydroxy groups to the rhodium center. A complex with this ligand bound in tridentate fashion is in equilibrium with a species with the common square-planar ligand arrangement. The 103Rh-NMR shift of the fivefold coordinated complex is found almost 500 ppm downfield from that of a fourfold coordinated species. This effect is characteristic for an increase in coordination number. At gradient-corrected levels of density-functional theory, a corresponding species with an oxygen-rhodium contact has been located, together with other isomers. The computed trends in energies and 103Rh chemical shifts are consistent with the experimental findings.  相似文献   

12.
An efficient rhodium(III)‐catalyzed synthesis of 2H‐chromene from N‐phenoxyacetamides and cyclopropenes has been developed. The reaction represents the first example of using cyclopropenes as a three‐carbon unit in rhodium(III)‐catalyzed C(sp2)? H activations.  相似文献   

13.
Divergent reactivity of organometallic rhodium(I) complexes, which led to the isolation of neutral rhodium silylenes, is described. Addition of PhRSiH2 (R=H, Ph) to the rhodium cyclooctene complex (iPrNNN)Rh(COE) (1-COE; iPrNNN=2,5-[iPr2P=N(4-iPrC6H4)]2N(C6H2), COE=cyclooctene) resulted in the oxidative addition of an Si−H bond, providing rhodium(III) silyl hydride complexes (iPrNNN)Rh(H)SiHRPh (R=H, 2 -SiH2Ph; Ph, 2 -SiHPh2). When the carbonyl complex (iPrNNN)Rh(CO) ( 1 -CO) was treated with hydrosilanes, base-stabilized rhodium(I) silylenes κ2-N,N-(iPrNNN)(CO)Rh=SiRPh (R=H, 3 -SiHPh; Ph, 3 -SiPh2) were isolated and characterized using multinuclear NMR spectroscopy and X-ray crystallography. Both silylene species feature short Rh−Si bonds [2.262(1) Å, 3 -SiHPh; 2.2702(7) Å, 3 -SiPh2] that agree well with the DFT-computed structures. The overall reaction led to a change in the iPrNNN ligand bonding mode (κ3→κ2) and loss of H2 from PhSiRH2, as corroborated by deuterium labelling experiments.  相似文献   

14.
An efficient rhodium(III)‐catalyzed synthesis of 2H‐chromene from N‐phenoxyacetamides and cyclopropenes has been developed. The reaction represents the first example of using cyclopropenes as a three‐carbon unit in rhodium(III)‐catalyzed C(sp2) H activations.  相似文献   

15.
A RhIII‐catalyzed direct ortho‐C?H amidation/amination of benzoic acids with N‐chlorocarbamates/N‐chloromorpholines was achieved, giving anthranilic acids in up to 85 % yields with excellent ortho‐selectivity and functional‐group tolerance. Successful benzoic acid aminations were achieved with carbamates bearing various amide groups including NHCO2Me, NHCbz, and NHTroc (Cbz=carbobenzyloxy; Troc=trichloroethylchloroformate), as well as secondary amines, such as morpholines, piperizines, and piperidines, furnishing highly functionalized anthranilic acids. A stoichiometric reaction of a cyclometallated rhodium(III) complex of benzo[h]quinoline with a silver salt of N‐chlorocarbamate afforded an amido–rhodium(III) complex, which was isolated and structurally characterized by X‐ray crystallography. This finding confirmed that the C?N bond formation results from the cross‐coupling of N‐chlorocarbamate with the aryl–rhodium(III) complex. Yet, the mechanistic details regarding the C?N bond formation remain unclear; pathways involving 1,2‐aryl migration and rhodium(V)– nitrene are plausible.  相似文献   

16.
《Electroanalysis》2017,29(10):2377-2384
Newly synthesized poly(styrene‐g‐oleic amide) was coated onto a rhodium nanoparticle modified glassy carbon (GC) surface for the fabrication of horseradish peroxidase based biosensor used for hydrogen peroxide detection. The rhodium modifed electrode presented ten times higher signal than unmodified electrode even at low elecrtroactive enzyme quantity by enhancing the electron transfer rate at the applied potential of −0.65 V. The biosensor designed by under the optimized rhodium electrodeposition time exhibited a fast response less than 5 s, an excellent operational stability with a relative standard deviation of 0.6 % (n=6), an accuracy of 96 % and a large linear range between 50 μM and 120 mM for hydrogen peroxide. Detection limit and the sensitivity parameters were calculated to be 44 μM and 57 μA mM−1 cm−2, respectively by preserving its entire initial response up to the 15 days, while only 20 % of its initial response was lost at the end of one month.  相似文献   

17.
A facile approach to the synthesis of diaryl- and dialkyl-substituted monophosphino-o-carboranes by rhodium(I)-catalyzed phosphine-directed B3,6−H activation has been developed for the first time. Upon switching rhodium(I) to palladium(II), C-arylated and B6-halogenated products were obtained by using tBuOLi and Li2CO3 as base, respectively. These discoveries provide some simple and efficient approaches to the modification of monophosphino-o-carboranes.  相似文献   

18.
Silica nanoparticles (SiNPs) were chosen as a solid support material for the immobilization of a new Wilkinson’s‐type catalyst. In a first step, polymer molecules (poly(triphenylphosphine)ethylene (PTPPE); 4‐diphenylphosphine styrene as monomer) were grafted onto the silica nanoparticles by surface‐initiated photoinferter‐mediated polymerization (SI‐PIMP). The catalyst was then created by binding rhodium (Rh) to the polymer side chains, with RhCl3 ? x H2O as a precursor. The triphenylphosphine units and rhodium as RhI provide an environment to form Wilkinson’s catalyst‐like structures. Employing multinuclear (31P, 29Si, and 13C) solid‐state NMR spectroscopy (SSNMR), the structure of the catalyst bound to the polymer and the intermediates of the grafting reaction have been characterized. Finally, first applications of this catalyst in hydrogenation reactions employing para‐enriched hydrogen gas (PHIP experiments) and an assessment of its leaching properties are presented.  相似文献   

19.
Solvent extraction of rhodium, ruthenium and iridium with di(2-ethylhexyl)phosphoric acid (HDEHP) has been investigated. Under the conditions [Cl–1]=0.20M, [(HDEHP)2]=0.30M, pH 4.05, phase contact time 1 minutes, Rh(III) is extracted 90.7%, Ru(III) and Ir(III) 20.0% and 11.5%, respectively, at phase ratio 11. The distribution ratio of rhodium is proportional to [(HDEHP)2]3 for a freshly prepared aqueous phase with low chloride concentration but might drop to [(HDEHP)2]1to2 for an aqueous phase high in chloride concentration and after standing. The spectroscopic studies indicate that the extracted compound of rhodium is Rh(H2O)6–x Cl x [H(DEHP)2]3–x (x=0, 1, 2).  相似文献   

20.
The rhodium(I)‐catalyzed C?C bond activation reaction of siloxyvinylcyclopropanes with diazoesters demonstrates a novel mode of C?C bond cleavage of siloxyvinvylcyclopanes. The alkene products were obtained as single E‐configured isomers in good yields. A σ,η3‐allyl rhodium complex, which has been previously proposed as the key intermediate in rhodium(I)‐catalyzed cycloaddition of vinylcyclopropanes, has been isolated and characterized by X‐ray crystallography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号