首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
A new heterogeneous catalyst containing a copper(II) Schiff base complex covalently immobilized on the surface of silica‐coated Fe3O4 nanoparticles (Fe3O4@SiO2‐Schiff base‐Cu(II)) was synthesized. Characterization of this catalyst was performed using various techniques. The catalytic potential of the catalyst was investigated for the oxidation of various alkenes (styrene, α‐methylstyrene, cyclooctene, cyclohexene and norbornene) and alcohols (benzyl alcohol, 3‐methoxybenzyl alcohol, 3‐chlorobenzyl alcohol, benzhydrol and n ‐butanol) using tert ‐butyl hydroperoxide as oxidant. The catalytic investigations revealed that Fe3O4@SiO2‐Schiff base‐Cu(II) was especially efficient for the oxidation of norbornene and benzyl alcohol. The results showed that norbornene epoxide and benzoic acid were obtained with 100 and 87% selectivity, respectively. Moreover, simple magnetic recovery from the reaction mixture and reuse for several times with no significant loss in catalytic activity were other advantages of this catalyst  相似文献   

2.
A magnetic nanocatalyst of Fe3O4@SiO2/ZnCl2 was prepared by supporting ZnCl2 on silica‐coated magnetic nanoparticles of Fe3O4. This recoverable catalyst was used for the synthesis of quinolines via Friedländer synthesis from 2‐aminoaryl ketones and α‐methylene ketones under solvent‐free condition. The prepared catalyst was characterized by FT‐IR, TEM, SEM, XRD, EDX, ICP‐OES, VSM and BET. It was found that Fe3O4@SiO2/ZnCl2 showed higher catalytic activity than homogenous ZnCl2, and could be reused several times without significant loss of activity.  相似文献   

3.
We report a new strategy to immobilize a bromine source on the surface of magnetic Fe3O4 nanoparticles (Fe3O4 MNPs-DETA/Benzyl-Br3) leading to a magnetically recoverable catalyst, which exhibits high catalytic efficiency in oxidative coupling of thiols to the disulfides (89–98%). The Fe3O4 MNPs-DETA/Benzyl-Br3 catalyst was fabricated by anchoring 3-chloropropyltrimethoxysilane (CPTMS) on magnetic Fe3O4 nanoparticles, followed with N-benzylation and reaction with bromine in tetrachloridecarbon. The resulting nanocomposite was analyzed by a series of characterization techniques such as FT-IR, SEM, TGA, VSM and XRD. The catalyst could be recovered via magnetic attraction and could be recycled at least 5 times without appreciable decrease in activity.  相似文献   

4.
A magnetic inorganic–organic nanohybrid material (HPA/TPI‐Fe3O4 NPs) was produced as an efficient, highly recyclable and eco‐friendly catalyst for the one‐pot multi‐component synthesis of malonamide and 2,3,4,5‐tetrahydrobenzo[b ][1,4]oxazepine derivatives with high yields in short reaction times (25–35 min) in aqueous media at room temperature. The nanohybrid catalyst was prepared by the chemical anchoring of H6P2W18O62 onto the surface of modified Fe3O4 nanoparticles (NPs) with N ‐[3‐(triethoxysilyl)propyl]isonicotinamide (TPI) linker. The magnetic recoverable catalyst was easily recycled at least ten times without any loss of catalytic activity.  相似文献   

5.
A strategy has been developed for the synthesis, characterization and catalysis of magnetic Fe3O4/P(GMA‐EGDMA)‐NH2/HPG‐COOH‐Pd core‐shell structure supported catalyst. The P(GMA‐EGDMA) polymer layer was coated on the surface of hollow magnetic Fe3O4 microspheres through the effect of KH570. The core‐shell magnetic Fe3O4/P(GMA‐EGDMA) modified by ‐NH2 could be grafted with HPG. Then, the hyperbranched glycidyl (HPG) with terminal ‐OH were modified by ‐COOH and adsorbed Pd nanoparticles. The hyperbranched polymer layer not only protected the Fe3O4 magnetic core from acid–base substrate corrosion, but also provided a number of functional groups as binding sites for Pd nanoparticles. The prepared catalyst was characterized by UV–vis, TEM, SEM, FTIR, TGA, ICP‐OES, BET, XRD, DLS and VSM. The catalytic tests showed that the magnetic Fe3O4/P(GMA‐EGDMA)‐NH2/HPG‐COOH‐Pd catalyst had excellent catalytic performance and retained 86% catalytic efficiency after 8 consecutive cycles.  相似文献   

6.
In this research, the main emphasis has been focused on the preparation of a novel Fe3O4-supported propane-1-sulfonic acid-grafted graphene oxide quantum dots (Fe3O4@GOQD-O-(propane-1-sulfonic acid)) that it was readily synthesized via a five-step procedure as a hitherto unreported magnetic nanocatalyst. This newly prepared Fe3O4@GOQD-O-(propane-1-sulfonic acid) nanocomposite was structurally well-established by different analytical techniques including Fourier transform infrared (FT-IR), X-ray diffraction (XRD), energy-dispersive X-ray (EDX), thermal gravimetric analysis (TGA), field emission gun-scanning electron microscope (FESEM), high-resolution transmission electron microscopy (HRTEM) and vibrating sample magnetometer (VSM) analyses. The high catalytic performance of this nanocomposite was exhibited in one-pot synthesis of dihydropyrano[2,3-c]pyrazole and 4H-chromene derivatives under mild conditions. Low reaction times, excellent yields of the products, benignity of the catalyst, easy reaction work-up and magnetic recyclability of the catalyst are the main advantages of the present protocol. Also, our research indicated that the Fe3O4@GOQD-O-(propane-1-sulfonic acid) could be reused up to five times without considerable loss of catalytic activity.  相似文献   

7.
基于水滑石类化合物的复合氧化物(LDO)是一类性能优异的固体碱催化剂,对其进行改性和功能化引起了越来越多的关注。本文将空心结构和Fe_3O_4引入到镁铝复合氧化物中,制备了一种空心结构磁性固体碱催化剂Fe_3O_4@LDO。这种空心结构磁性固体碱催化剂粒子具有以镁铝复合氧化物为壳层,空心Fe_3O_4为核的核壳结构。由于其独特的空心结构,Fe_3O_4@LDO粒子的悬浊液具有良好的稳定性,将其应用于催化Knoevenagel缩合反应,达到平衡后苯甲醛的转化率约为62%,显示出较好的催化性能。同时,Fe_3O_4@LDO粒子具有较强的磁性,非常方便分离与回收,是一种性能优良的磁性固体碱催化剂。  相似文献   

8.
通过简易的超声法以及原位还原法成功制备出了负载型可再生Au/Fe3O4催化剂。利用3-氨丙基三乙氧基硅烷(APTES)作为有机桥键,将Au固定在Fe3O4的表面,得到单分散磁性Au/Fe3O4。Au0在氨基的作用下不会团聚,因此具有较高的催化活性及稳定性。XRD、HRTEM、EDS和XPS等测试结果表明Au/Fe3O4已被成功制备。将其用于催化还原4-硝基苯酚得到4-氨基苯酚,表现出较高的催化活性,速率常数可达0.225 6 min-1。重复性实验表明该催化剂具有良好的稳定性,反应9个循环之后,催化还原反应的转化率仍可达到94%。  相似文献   

9.
通过简易的超声法以及原位还原法成功制备出了负载型可再生Au/Fe_3O_4催化剂。利用3-氨丙基三乙氧基硅烷(APTES)作为有机桥键,将Au固定在Fe_3O_4的表面,得到单分散磁性Au/Fe_3O_4。Au0在氨基的作用下不会团聚,因此具有较高的催化活性及稳定性。XRD、HRTEM、EDS和XPS等测试结果表明Au/Fe_3O_4已被成功制备。将其用于催化还原4-硝基苯酚得到4-氨基苯酚,表现出较高的催化活性,速率常数可达0.225 6 min~(-1)。重复性实验表明该催化剂具有良好的稳定性,反应9个循环之后,催化还原反应的转化率仍可达到94%。  相似文献   

10.
Supported palladium catalyst (Pd/Fe3O4@SiO2) was easily prepared by supporting PdCl2 on silica‐coated magnetic nanoparticles Fe3O4 in ethylene glycol. The as‐prepared sample was characterized by infrared spectroscopy (IR), X‐ray diffraction (XRD) and X‐ray photoelectron spectrometer (XPS). The formation of active specie Pd(0) was confirmed by XRD and XPS, and the Pd loading for the fresh and recovered catalyst was determined by atomic absorption spectroscopy (AAS). Pd/Fe3O4@SiO2 was employed for the synthesis of biphenyl derivatives via Suzuki reaction. In terms of the yield of biphenyl, the supported catalyst displayed nearly equal catalytic performance to that of homologous PdCl2 under microwave irradiation for 30 min but higher than that obtained by traditional heating method for 12 h. The catalytic performance of Pd/Fe3O4@SiO2 for Suzuki reactions involving various aryl halides and arylboronic acids were also examined. Impressive yield of biphenyl at 68.2% was obtained even in the presence of unreactive aryl chlorides. Pd/Fe3O4@SiO2 was recovered by a permanent magnet and directly reused in the next run, and no obvious deactivation was observed for up to 6 times. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Graphene oxide ‐ Fe3O4 ‐ NH3+H2PW12O40 magnetic nanocomposite (GO/Fe3O4/HPW) was prepared by linking amino ‐ functionalized Fe3O4 nanoparticles (Fe3O4 ‐ NH2) on the graphene oxide (GO), and then grafting 12 ‐ tungstophosphoric acid (H3PW12O40) on the graphene oxide ‐ magnetite hybrid (GO ‐ Fe3O4 ‐ NH2). The obtained GO/Fe3O4/HPW nanocomposite was well characterized with different techniques such as FT ‐ IR, TEM, SEM, XRD, EDX, TGA ‐ DTA, AGFM, ICP and BET measurements. The used techniques showed that the graphene oxide layers were well prepared and the various stages of preparation of the GO/Fe3O4/HPW nanocomposites successfully completed. This new nanocomposite displayed excellent performance as a heterogeneous catalyst in the oxidation of alcohols with H2O2. The as ‐ prepared GO/Fe3O4/HPW catalyst was more stable and recyclable at least five times without significantly reducing its catalytic activity.  相似文献   

12.
In this study, Pd based on 2-Aminopyrimidine and 1H-benzo[d]imidazol-2-amine functionalized Fe3O4 magnetic nanoparticles [(Pd-APM-PSi-Fe3O4) and (Pd-BIA-PSi-Fe3O4)] was designed and used for the synthesis of di aryl ether by Ulmann cross-coupling reactions. Ulmann reaction performed with mixing of the arylhalides and phenol derivatives in DMF solvent. The prepared catalysts were characterized with various analytical techniques such as FT-IR, XRD, TGA, SEM, TEM, EDX, ICP and VSM. Pd-APM-PSi-Fe3O4 and Pd-BIA-PSi-Fe3O4 catalysts demonstrated good to excellent yields catalytic efficiency for Ulmann reactions in comparison with to commercial palladium catalysts. The catalyst is easily recycled and reused without loss of the catalytic activity. The combined merits of reusable catalyst conditions make the condensation with safe operation, no leaching of pd into environment, low pollution, rapid access to products and simple workup. Also, these novel magnetic nanocatalysts are superior to the industry standard Pd in every relevant aspect. They feature a way higher initial activity, a much more convenient separation, better recycling, and less contamination of the products. Last but not least, they can be very easily prepared from commercially available Fe3O4 nanoparticles using standard laboratory equipment.  相似文献   

13.
通过使用聚乙烯吡咯烷酮作为稳定剂,合成了磁性Pd/Fe3O4纳米颗粒催化剂。对该催化剂进行粉末X射线衍射、透射电子显微镜、感应耦合等离子体和磁性表征。将Pd/Fe3O4催化剂用于Heck反应,检测其催化性能。测试结果表明Pd纳米颗粒负载在Fe3O4纳米颗粒上,而且催化剂的尺寸<20 nm,并在Heck反应中表现了极好的催化性能。此外,催化剂可以通过磁场回收利用, 且催化活性没有显著的降低。  相似文献   

14.
An effective one‐pot, convenient process for the synthesis of 1‐ and 5‐substituted 1H‐tetrazoles from nitriles and amines is described using1,4‐dihydroxyanthraquinone–copper(II) supported on Fe3O4@SiO2 magnetic porous nanospheres as a novel recyclable catalyst. The application of this catalyst allows the synthesis of a variety of tetrazoles in good to excellent yields. The preparation of the magnetic nanocatalyst with core–shell structure is presented by using nano‐Fe3O4 as the core, tetraethoxysilane as the silica source and poly(vinyl alcohol) as the surfactant, and then Fe3O4@SiO2 was coated with 1,4‐dihydroxyanthraquinone–copper(II) nanoparticles. The new catalyst was characterized using Fourier transform infrared spectroscopy, X‐ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, dynamic light scattering, thermogravimetric analysis, vibration sample magnetometry, X‐ray photoelectron spectroscopy, nitrogen adsorption–desorption isotherm analysis and inductively coupled plasma analysis. This new procedure offers several advantages such as short reaction times, excellent yields, operational simplicity, practicability and applicability to various substrates and absence of any tedious workup or purification. In addition, the excellent catalytic performance, thermal stability and separation of the catalyst make it a good heterogeneous system and a useful alternative to other heterogeneous catalysts. Also, the catalyst could be magnetically separated and reused six times without significant loss of catalytic activity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
A robust, safe and magnetically recoverable palladium catalyst was synthesized by anchoring Pd(II) onto ethylenediaminetetraacetic acid‐coated Fe3O4 (Fe3O4@EDTA) magnetic nanoparticles. The Fe3O4 magnetic nanoparticle‐supported Pd(II)–EDTA complex catalyst thus obtained was characterized using scanning and transmission electron microscopies, thermogravimetric analysis, vibrating sample magnetometry, X‐ray diffraction, and inductively coupled plasma atomic emission and Fourier transform infrared spectroscopies. Fe3O4@EDTA–Pd(II) was screened for the Suzuki reaction and reduction of nitro compounds in water. The Pd content of the catalyst was measured to be 0.28 mmol Pd g?1. In addition, the Fe3O4@EDTA–Pd catalyst can be easily separated and recovered with an external permanent magnet. The anchored solid catalyst can be recycled efficiently and reused five times with only a very slight loss of catalytic activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
A chiral Schiff base complex has been prepared by treating (R)-1,2-diaminopropane with 3,5-dichlorosalicylaldehyde in ethanol, followed by addition of manganese chloride hexahydrate to generate a homogeneous catalyst, [MnL(Cl)(H2O)] (HMN). Crystal structure of the complex reveals its mononuclear nature. Circular dichroism (CD) studies indicate that the ligand and its corresponding complex contain an asymmetric center. The catalytic activity of HMN toward epoxidation of alkenes, oxidation of alcohols and oxidation of alkanes has been investigated in the presence of iodosylbenzenediacetate (PhI(OAc)2), in acetonitrile. In the present work we found yields to be much higher compared to our previous approaches. For further adaptation, we attached our efficient homogeneous catalyst with surface modified magnetic nanoparticles (Fe3O4@dopa) and thereby obtained a new magnetically separable nanocatalyst Fe3O4@dopa@MnLCl (FDM). This catalyst has been characterized and its oxidation ability assessed in similar conditions as those used for the homogeneous catalyst. Enantiomeric excess in epoxide yield reveals retention of chirality of the active site of Fe3O4@dopa@MnLCl. The catalyst can be recovered by magnetic separation and recycled several times without significant loss of catalytic activity.  相似文献   

17.
Copper supported on 2-(1H-benzo[d]imidazol-2-yl)aniline (BIA)-functionalized Fe3O4 nanoparticles (Cu-BIA-Si-Fe3O4) as a novel magnetic catalyst was designed and used for the synthesis of new products via Ullmann and Suzuki cross-coupling reactions. The Ullmann reaction was performed by mixing arylboronic acid with aniline derivatives in dimethylsulfoxide solvent. Also, diaryls were synthesized via Suzuki C–C reactions between aryl halides and phenylboronic acid in the same solvent. The prepared materials and catalyst were characterized with various analytical techniques. The Cu-BIA-Si-Fe3O4 catalyst demonstrated catalytic efficiency with good to excellent yields for both types of reactions in comparison with commercial palladium catalysts. Also, the catalyst could be recovered by a simple filtration and retained its activity even after several cycles.  相似文献   

18.
An amino‐functionalized silica‐coated Fe3O4 nanocomposite (Fe3O4@SiO2/APTS) was synthesized. The Fe3O4@SiO2 microspheres possessed a well‐defined core–shell structure, uniform sizes and high magnetization. An immobilized ruthenium nanoparticle catalyst (Fe3O4@SiO2/APTS/Ru) was obtained after coordination and reduction of Ru3+ on the Fe3O4@SiO2/APTS nanocomposite. The Ru nanoparticles were not only ultra‐small with nearly monodisperse sizes but also had strong affinity with the surface of Fe3O4@SiO2/APTS. The obtained catalyst exhibited excellent catalytic performance for the hydrogenation of a variety of aromatic nitro compounds, even at room temperature. Moreover, Fe3O4@SiO2/APTS/Ru was easily recovered using a magnetic field and directly reused for at least five cycles without significant loss of its activity.  相似文献   

19.
An eco‐efficient one‐pot three component reaction between different aldehydes or ketones with alkynes and amines for the synthesis of propargylamines was performed using Fe3O4@TiO2/Cu2O as a nano‐magnetic composite under solvent free condition. The catalyst showed remarkable catalytic activity by decreasing the time of the reaction in comparison of other reported magnetic catalysts. In addition, the Fe3O4@TiO2/Cu2O can be easily recycled and reutilized for five times without apparent loss of catalytic activity.  相似文献   

20.
《中国化学》2017,35(9):1431-1436
Enhancement of Fe3O4 /Au nanoparticles (Fe3O4 /Au NPs ) catalyst was observed in the oxidative degradation of methyl orange by employing H2O2 as oxidant. To evaluate the catalytic activity of Fe3O4 /Au nanoparticles, different degradation conditions were investigated such as the amounts of catalyst, H2O2 concentration and pH value. Based on our data, methyl orange was degraded completely in a short time. The enhanced catalytic activity and increased oxidation rate constant may be ascribed to synergistic catalyst‐activated decomposition of H2O2 to •OH radical, which was one of the strong oxidizing species. Besides, Fe3O4 /Au nanoparticles have exhibited satisfying recycle performance for potential industrial application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号